
RADA: A Tool for Reasoning about Algebraic
Data Types with Abstractions

Michael Whalen and Tuan-Hung Pham

University of Minnesota

Abstract. We present RADA, a portable, scalable open source tool for
reasoning about formulas containing algebraic data types using catamor-
phism (fold) functions. It can function as a back-end for reasoning about
recursive programs that manipulate algebraic types. RADA operates by
successively unrolling catamorphisms and uses either CVC4 and Z3 as
reasoning engines. We have used RADA for reasoning about functional
implementations of complex data structures and to reason about guard
applications that determine whether XML messages should be allowed to
cross network security domains. Promising experimental results demon-
strate that RADA can be used in several practical contexts.

1 Introduction

Reasoning about algebraic data types has been an ongoing research topic since
they are ubiquitous in functional programming. Applications include reason-
ing about data structure algorithms and guard (firewall) applications that al-
low/disallow XML messages to pass between networks (as is performed in the
Guardol [6] system). To help address the challenge, powerful SMT solvers such
as CVC4 [1] and Z3 [4] have also natively supported inductive data types writ-
ten in SMT format, allowing end-users to experiment with interesting problems
involving recursive data structures.

To reason about inductive data types, one of the prominent approaches is to
abstract these data types into values in some decidable domains. The abstraction
could be in the form of a catamorphism, as in decision procedures proposed by
Suter et al. [9, 10], or could be in the form of recursively defined functions, as in
the Dryad logic introduced by Madhusudan et al. [8]. Tools have been created
to reason about these applications, such as the Leon verification system [10] that
works on top of Z3 and reasons over functions containing complex algebraic data
structures written in Scala. However, these tools tend to be tightly integrated
with the host language that they reason over: the Leon verification system is
tightly integrated with Scala. For broader applicability, we would like to have a
language-agnostic tool to perform this reasoning.

In this paper, we introduce RADA, an open source tool written in SML/NJ
to reason about algebraic data types with abstractions that is conformant with
the SMT-Lib 2.0 format. RADA was designed to be host-language and solver-
independent and it can use either CVC4 or Z3 as its underlying SMT solver.

RADA has also been tested on all major platforms and has successfully been
integrated into the Guardol system [6]. Experiments show that our tool is reli-
able, fast, and works seamlessly across multiple platforms, including Windows,
Unix, and Mac OS.

The rest of this paper is organized as follows. Section 2 presents the algorithm
behind RADA. Next, Section 3 describes its general architecture. Section 4
shows some experimental results we did with RADA. Finally, we conclude and
outline some future work in Section 5.

2 Algorithm

RADA works based on a semi-decision procedure proposed by Suter et al. [10] to
reason about recursive functions with abstractions. The input of the procedure
is a formula φ in a parametric logic1 that consists of literals over elements of
tree terms and tree abstractions generated by a catamorphism. In other words,
φ contains a recursive data type τ , an element type E of the value stored in each
tree node, a collection type C of tree abstractions in a decidable logic LC , and
a catamorphism α : τ → C that maps an object in the data type τ into a value
in the collection type C. For example, suppose we have a data type RealTree
that represents a binary tree of real numbers. Each node of the tree can be
either a Leaf or a Node(left : RealTree, elem : Real, right : RealTree). To abstract
a RealTree, we could use a function SumTree : RealTree → Real that maps the
tree into a number showing the sum of all the elements stored in the tree. In
this example, E , C, and α are Real, Real, and SumTree, respectively.

The decision procedure works on top of an SMT solver 2 S that supports
theories for τ, E , C, and uninterpreted functions. Note that the only part of the
parametric logic that is not inherently supported by S is the applications of
the catamorphism. Therefore, the main idea of the decision procedure is to ap-
proximate the behavior of the catamorphism by repeatedly unrolling it a certain
number of times and treating the calls to the not-yet-unrolled catamorphism
instances at the lowest levels as calls to uninterpreted functions. However, a un-
interpreted function can return any values in its co-domain; hence, the presence
of these uninterpreted functions can make the sat/unsat result not trustworthy.
To address this issue, each time the catamorphism is unrolled, a boolean control
condition B is created to determine if the uninterpreted functions at the bottom
level are necessary to the determination of satisfiability. That is, if B is true, the
list of uninterpreted functions does not play any role in the satisfiability result.

The main steps of the procedure are shown in Algorithm 1. The input of the
algorithm is a formula φ written in the parametric logic and a program Π, which
contains φ and the definitions of data type τ and catamorphism α. The goal of
the algorithm is to determine the satisfiability of φ through repeated unrolling α
using the unrollStep function. Given a formula φi generated from the original φ
after unrolling the catamorphism i times and the corresponding control condition

1 See [9] for a full description of the syntax and sematics of the parametric logic.
2 Suter et al. [10] specifically used Z3 [4] as the underlying SMT solver.

Bi of φi, function unrollStep(φi, Π,Bi) unrolls the catamorphim one more time
and returns a pair (φi+1, Bi+1) containing the unrolled version φi+1 of φi and a
control condition Bi+1 for φi+1. Function decide(ϕ) simply calls S to check the
satisfiability of ϕ and returns SAT/UNSAT accordingly.

Algorithm 1: Catamorphism unrolling algorithm [10]

1 (φ,B)← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧

∧
b∈B b) do

4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B)← unrollStep(φ,Π,B)

Let us examine how satisfiability and unsatisfiability are determined in the
algorithm. In general, the algorithm keeps unrolling the catamorphism until we
find a sat/unsat result that we can trust. To do that, we need to consider several
cases after each unrolling step is carried out. First, at line 4, φ is satisfiable
and the control condition is true, which means uninterpreted functions are not
involved in the satisfiable result. In this case, we have a complete tree model for
the SAT result and we can conclude that the problem is satisfiable.

On the other hand, let us consider the case when decide(φ ∧
∧

b∈B b) =
UNSAT. The UNSAT may be due to the unsatisfiability of φ, or the control
condition, or both of them together. As a result, to understand the UNSAT
more deeply, we could try to check the satisfiability of φ alone, as depicted at
line 7. Note that checking φ alone also means that the control condition is not
used; consequently, the values of uninterpreted functions may contribute to the
SAT/UNSAT result of decide(φ). If decide(φ) = UNSAT as at line 8, we can
conclude that the problem is unsatisfiable because assigning the uninterpreted
functions to any values in their co-domains still cannot make the problem satis-
fiable as a whole. Finally, we need to consider the case decide(φ) = SAT as at
line 10. Since we already know that decide(φ∧

∧
b∈B b) = UNSAT, the only way

to make decide(φ) be SAT is by calling to at least one uninterpreted function,
which also means that the SAT result is untrustworthy. Therefore, we need to
keep unrolling at least one more time as denoted at line 11.

3 Tool Architecture

Fig. 1 shows the overall architecture of RADA, which follows closely the algo-
rithm described in Section 2. We use CVC4 [1] and Z3 [4] as the underlying SMT
solvers in RADA because of their powerful abilities to reason about recursive
data types. The grammar of RADA in Fig. 2 is based on the SMT-Lib 2.0 [2]
format with some new syntax for selectors, testers, data type declarations, and
catamorphism declarations.

Is SAT (without
control condition)?

Is SAT (with
control condition)?

RADA
Source

RADA
Parser

Unrolling
Loop

SMT2
AST

Tool-specific
Emitter

SMT Solver
(Z3 or CVC4)

UNSAT

SAT
Yes

NoYes

No

Fig. 1. RADA architecture.

〈command〉1 ::= (declare-datatypes 〈datatype〉+)
〈datatype〉 ::= (〈symbol〉 〈datatype branch〉+)

〈datatype branch〉 ::= (〈symbol〉 [〈datatype branch parameter〉+])
〈datatype branch parameter〉 ::= (〈symbol〉 〈sort〉)

〈command〉2 ::= (define-catamorphism 〈catamorphism〉)
〈catamorphism〉 ::= (〈symbol〉 (〈sort〉) 〈sort〉 〈term〉)

〈selector application〉 ::= 〈symbol〉 〈symbol〉
〈tester application〉 ::= is 〈symbol〉 〈symbol〉]

Fig. 2. RADA grammar.

Note that although selectors, testers, and data type declarations are not
defined in SMT-Lib 2.0, all of them are currently supported by both CVC4
and Z3; therefore, only catamorphism declarations are not understood by these
solvers. As a result, to bridge the gap between the input format of RADA and
that of CVC4/Z3, each time the catamorphism is unrolled, we build an abstract
syntax tree in which the catamorphism declaration is replaced by a uninterpreted
function representing the behaviors of the unrolled parts of the catamorphism.
Based on the abstract syntax tree, we could generate an .smt2 file that CVC4
or Z3 accepts with the help of a tool-specific emitter, which is responsible for
creating a suitable .smt2 file for the solver being used.

To illustrate the grammar used in RADA, let us further examine the RealTree
example briefly mentioned in Section 2. A RealTree, which could be a leaf or a
root node with two subtrees and a number stored in the node, could be written
in RADA syntax as follows:

(declare-datatypes (

(RealTree (Leaf)

(Node (left RealTree) (elem Real) (right RealTree)))))

Next, a RealTree could be abstracted into a real number representing the sum of
all elements in the tree by catamorphism SumTree, which could be recursively
defined as follows:

(define-catamorphism SumTree ((foo RealTree)) Real

(ite (is_Leaf foo) 0.0

(+ (SumTree (left foo)) (elem foo) (SumTree (right foo)))))

In the above SumTree definition, is Leaf is a tester that checks if a RealTree
is a leaf node and left foo, elem foo, and right foo are selectors that select the
corresponding data type branches in a RealTree named foo. Given the definitions
of data type RealTree and catamorphism SumTree, one may want to check some
properties of a RealTree in an SMT style, for example:

(declare-fun l1 () RealTree)

(declare-fun l2 () RealTree)

(declare-fun l3 () RealTree)

(assert (= l1 (Node l2 5.0 l3)))

(assert (= (SumTree l1) 5.0))

(check-sat)

As expected, RADA returns sat for the above simple example.

4 Experimental Results

RADA has been successfully integrated into the Guardol system [6], replacing
our implementation of the Suter-Dotta-Kuncak decision procedure [9] on top of
OpenSMT [3] in Guardol. We have experimented RADA with a collection of
approximately 20 benchmark guard examples. The results are very promising:
all of them were automatically verified in a very short amount of time. While
the majority of our benchmarks was manually designed, the most challenging
one was automatically generated from Guardol. It has 8 mutually recursive data
types, contains 17 complex verification conditions, and requires 65 satisfiability
checking calls to SMT solvers. It took less than 3 seconds for RADA to prove
the unsatisfiability of all verification conditions in this benchmark.

During our experiments on the performance of RADA, more than 100 in-
termediate .smt2 files involving inductive data types were also created. Not sur-
prisingly, CVC4 and Z3 return the same sat/unsat result for each intermediate
.smt2 file. Since the ability to reason about inductive data types has just recently
been implemented in these SMT solvers, we believe that our collection of .smt2

files could also be served as ones of the valuable regression examples of inductive
data types, especially for CVC4 and Z33.

RADA is written in SML/NJ, designed to be solver-independent, highly
portable, and can be compiled on all major platforms. All benchmarks were run
on a machine using an Intel Core I3 running at 2.13 GHz. RADA, its bench-
marks, the collection of intermediate .smt2 files, and all experimental results are
available at http://crisys.cs.umn.edu/rada.

5 Conclusion

We have presented RADA, an open source tool to reason about inductive data
types with catamorphisms. RADA was designed to be simple, efficient, portable,
and easy to use. The successful uses of RADA in the Guardol project [6] make
us believe that RADA not only could serve as a good research prototype tool
but also holds a great promise to be used in other real world applications.

With the help of RADA, we have been able to reason about unbounded
data in Guardol. However, verifying string operations in Guardol still remains
a challenge and they are currently treated as uninterpreted functions in our
system. Therefore, in the future, we would like to extend RADA to support a
string decision procedure [7, 5, 11] in our analysis tool.

References

1. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV,
2011.

2. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. In SMT, 2010.

3. Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The
OpenSMT Solver. In TACAS, 2010.

4. Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In TACAS,
2008.

5. Vijay Ganesh, Adam Kieżun, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and
Michael Ernst. HAMPI: A Solver For String Constraints. In ISSTA, 2009.

6. David Hardin, Konrad Slind, Michael Whalen, and Tuan-Hung Pham. The Guardol
Language and Verification System. In TACAS, 2012.

7. Pieter Hooimeijer and Margus Veanes. An Evaluation of Automata Algorithms for
String Analysis. In VMCAI, 2011.

8. Parthasarathy Madhusudan, Xiaokang Qiu, and Andrei Stefanescu. Recursive
Proofs for Inductive Tree Data-Structures. In POPL, 2012.

9. Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision Procedures for Alge-
braic Data Types with Abstractions. In POPL, 2010.

10. Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability Modulo Re-
cursive Programs. In SAS, 2011.

11. Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic String Verification: Com-
bining String Analysis and Size Analysis. In TACAS, 2009.

3 We have given our collection of .smt2 files to assist the Z3 and CVC4 teams.

