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Abstract

The test oracle—a judge of the correctness of the system under test (SUT)—is a major com-

ponent of the testing process. Specifying test oracles is challenging for some domains, such as

real-time embedded systems, where small changes in timing or sensory input may cause large

behavioral differences. Models of such systems, often built for analysis and simulation, are

appealing for reuse as test oracles. These models, however, typically represent an idealized

system, abstracting away certain issues such as non-deterministic timing behavior and sensor

noise. Thus, even with the same inputs, the model’s behavior may fail to match an acceptable

behavior of the SUT, leading to many false positives reported by the test oracle.

We propose an automated steering framework that can adjust the behavior of the model to

better match the behavior of the SUT to reduce the rate of false positives. This model steering

is limited by a set of constraints (defining the differences in behavior that are acceptable) and is

based on a search process attempting to minimize a dissimilarity metric. This framework allows

non-deterministic, but bounded, behavioral differences, while preventing future mismatches

by guiding the oracle—within limits—to match the execution of the SUT. Results show that

steering significantly increases SUT-oracle conformance with minimal masking of real faults

and, thus, has significant potential for reducing false positives and, consequently, testing and

debugging costs while improving the quality of the testing process.
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Chapter 1

Introduction

When running a suite of tests, the test oracle is the judge that determines the correctness of

the execution of a given system under test (SUT). Over the past decades, researchers have

made remarkable improvements in automatically generating effective test stimuli [1], but it

remains difficult to build an automated method of checking behavioral correctness. Despite

increased attention, the test oracle problem [2]—the set of challenges related to the construction

of efficient and robust oracles—remains a major problem in many domains.

One such domain is that of real-time process control systems—embedded systems that in-

teract with physical processes such as implanted medical devices or power management sys-

tems. Systems in this domain are particularly challenging since their behavior depends not

only on the values of inputs and outputs, but also on their time of occurrence [3]. In addition,

minor behavioral distinctions may have significant consequences [4]. When executing the soft-

ware on an embedded hardware platform, several sources of non-determinism, such as input

processing delays, execution time fluctuation, and hardware inaccuracy, can result in the SUT

non-deterministically exhibiting varying—but acceptable—behaviors for the same test case.

Behavioral models [5], typically expressed as state-transition systems, represent the sys-

tem specifications by prescribing the behavior (the system state) to be exhibited in response

to given input. Common modeling tools in this category are Stateflow [6], Statemate [7], and

Rhapsody [8]. Models built using these tools are used for many purposes in industrial software

development, particularly during requirements and specification analysis. Behavior modeling

is common for the analysis of embedded and real-time systems, as the requirements for such

systems are naturally stateful—their outcome depends strongly on the current system mode and

1
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a number of additional factors both internal and external to the system. Because such models

can be “executed”, a potential solution to the need for a test oracle is to execute the same tests

against both the model and the SUT and compare the resulting behaviors.

These models, however, provide an abstract view of the system that typically simplifies the

actual conditions in the execution environment. For example, communication delays, process-

ing delays, and sensor and actuator inaccuracies may be omitted. Therefore, on a real hardware

platform, the SUT may exhibit behavior that is acceptable with respect to the system require-

ments, but differs from what the model prescribes for a given input; the system under test is

“close enough” to the behavior described by the model. Over time, these differences can build

to the point where the execution paths of the model and the SUT diverge enough to flag the test

as a “failure,” even if the system is still operating within the boundaries set by the requirements.

In a rigorous testing effort, this may lead to tens of thousands of false reports of test failures

that have to be inspected and dismissed—a costly process.

One simple potential solution would be to filter the test results on a step-by-step basis—

checking the state of the SUT against a set of constraints and overriding a failing verdict if

those constraints are met. However, filter-based approaches are inflexible. While a filter may be

able to handle isolated non-conformance between the SUT and the oracle model, it will likely

fail to account for behavioral divergence that builds over time, growing with each round of

input.

Instead, we take inspiration for addressing this model-SUT mismatch problem from pro-

gram steering, the process of adjusting the execution of live programs in order to improve per-

formance, stability, or correctness [9]. We hypothesize that behavioral models can be adapted

for use as oracles for real-time systems through the use of steering actions that override the cur-

rent execution of the model [10, 11]. By comparing the state of the model-based oracle (MBO)

with that of the SUT following an output event, we can guide the model to match the state of the

SUT through a search process that seeks a steering action that transitions the model to a reach-

able state that obeys a set of user-specified constraints and general steering policies and that

minimizes a dissimilarity metric. For example, if mismatches occur due to sensor inaccuracy in

the real system, then we could incorporate the sensor’s expected accuracy range as a constraint

and try different values within that range. The steering process, by using a search algorithm

and the provided constraints, widens the set of behaviors that the model will accept while re-

taining the power of the oracle as an arbiter on test results. Unlike a filter, steering is adaptable,
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adjusting the live execution of the model—within the space of legal behaviors—to match the

execution of the SUT. The result of steering is a widening of the behaviors accepted by the

oracle, thus compensating for allowable non-determinism, without unacceptably impairing the

ability of the model-based oracle to correctly judge the behavior of the SUT.

We present an automated framework for comparing and steering the model-based oracle

with respect to the SUT. In this dissertation, we include a detailed discussion of the implemen-

tation and implications of oracle steering, and assess the capabilities of the steering framework

on two systems with complex, time-based behaviors—the control software of a patient con-

trolled analgesia pump (a medical infusion pump) and a pacemaker.

Case study results indicate that steering improves the accuracy of the final oracle verdicts—

outperforming both default testing practice and step-wise filtering. Oracle steering successfully

accounts for within-tolerance behavioral differences between the model-based oracle and the

SUT—eliminating a large number of spurious “failure” verdicts—with minimal masking of real

faults. By pointing the developer towards behavior differences more likely to be indicative of

real faults, this approach has the potential to reduce testing effort and reduce development cost.

As the choice of constraints intuitively has an impact on the ability of steering to account for

allowable non-determinism, we have also examined the performance of steering when several

different sets of constraints are used. These constraints vary in the level of freedom given to the

steering algorithm to adjust the oracle verdict, ranging from a scenario where no constraints are

used at all to one where the steering algorithm is given very little ability to adjust the state of the

system. As a result, we confirmed the importance of the choice of constraints in determining the

effectiveness of steering. Relatively strict, well-considered constraints strike the best balance

between enabling steering to focus developers and preventing steering from masking faults.

As constraints are loosened, steering may be able to account for more and more acceptable

deviations, but at the cost of also masking more faults. Alternatively, loose constraints may also

impair steering from performing its job by allowing the search process the freedom to choose a

suboptimal steering action.

Given the importance of selecting constraints, there is a lot of pressure on developers to

choose the correct options. Fortunately—even if developers are unsure of what variables to set

constraints on—as long as they can classify the outcome of a set of tests, a set of constraints

can be automatically learned through a process known as treatment learning. Given a set of

classified test cases, we can execute steering with no constraints, extract information on the
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induced changes, and apply a treatment learner to discover what changes were imposed by

steering when it acted correctly. We can then apply these learned constraints when steering for

a broader set of test executions. For our case examples, the derived constraint sets were small,

strict, and able to successfully steer the model with only minimal tuning.

We have found that steering is able to automatically adjust the execution of the oracle to

handle non-deterministic, but acceptable, behavioral divergence without covering up most fault-

indicative behaviors. We, therefore, recommend the use of steering as a tool for focusing and

streamlining the testing process.

1.1 Statement of Thesis

Industrial developers seek to use model-based oracles when testing systems, but abstraction is-

sues and unexpected non-determinism make the achievement of that goal challenging. Yet, we

also know from anecdotal experience that some developers already conduct an ad-hoc steering

of model-based oracles to work around such issues. These two points provide motivation for

the objective of this dissertation, which—as addressed above—is to address the challenges of

using behavioral models as test oracles through the use of general, controlled steering proce-

dures. The central hypothesis of this thesis is that oracle steering, if conducted in a controlled

manner, is an effective and low-cost method of reusing behavioral models as an information

source for test oracles.

To that end, we have proposed steering methods and an automated framework to control

the execution of a behavioral model. By comparing the behaviors of both the oracle and system

under test following a cycle of input and output, we can backtrack and choose a valid state in the

oracle that more closely matches the current state of the SUT. We believe that such an approach,

as long as our hypothesis is true, will allow us to compensate for the non-determinism observed

in real-world execution, while retaining the power of the oracle as an arbiter on behavior.

1.2 Contributions of this Thesis

Our long-range goal is to improve the practice of software testing. The test oracle is not a well-

understood artifact, and improvements in the construction, composition, and use of such oracles

will lead to improvements in testing practices and a lessening of the burden on the human tester.
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Of the paired problems of test oracle construction and test input construction, substantially

more research has been devoted to the latter. While interest in this area is increasing [2], the

test oracle problem remains a major challenge for many domains. The research presented in

this dissertation does not solve the test oracle problem—for instance, we do not offer methods

of automatically creating oracles—but, it does represent a major step forward by enabling the

use of behavioral models as test oracles for real-world embedded systems. Embedded systems

represent a large portion of the software produced in industrialized societies, and such models

could lead to large improvements in the cost and effectiveness of testing efforts.

The intellectual merit of the presented research lies in its new and novel contributions to

the body of literature on software testing and test oracles. This work is significant because it (a)

addresses a real-world testing challenge that has not been solved in a satisfactory manner, and

(b), our solution can potentially bring about major improvements to the quality and cost of the

software testing process for embedded and real-time systems. Such systems are becoming more

and more common, and the presented research enables the use of models as oracles during their

testing. We have addressed a real industrial problem. Developers already build these models,

and their reuse as oracles is desired, but issues with abstraction and non-determinism have made

the achievement of this goal daunting. Adoption of our techniques by industrial developers

could result in lower testing costs and reduced development effort.

This dissertation has made the following contributions to the software testing literature:

1. We have developed steering procedures for model-based test oracles. We have de-

vised an automated search process for steering the test oracle that accounts for accept-

able deviations from the predicted system behavior by backtracking the execution of the

model-based oracle, constraining the list of reachable states through a set of user-specified

constraints, and selecting a new candidate state using a numeric dissimilarity metric.

2. We have developed output comparison procedures to quantify behavioral deviations.
The search for a candidate search solution is guided by a dissimilarity metric that com-

pares the state of the model-based oracle to the state of the system under test. We have

examined the use of multiple metrics and their role in determining the effectiveness of

the search procedure.

3. We have created an automated method to learn steering constraints. The user-

specified constraints on the steering process have an important role in controlling the



6

search process. We have used treatment learning, a data mining technique focused on

crafting small sets of rules that select for particular types of data, to extract candidate

steering constraints. Experiments indicate that this process is effective in producing pow-

erful constraints.

4. We detail the implementation of these steering, comparison, and learning proce-
dures as part of an automated testing framework. This framework is able to make

effective use of behavioral models as a source of oracle information while addressing the

complications presented in the real-world use of such models.

5. We empirically evaluate the use of oracle steering on medical devices. We have con-

ducted rigorous experiments to ascertain the impact of the use of oracle steering to com-

pensate for non-determinism in the testing of real-time systems—including an infusion

pump and a pacemaker. In addition to determining the safety and effectiveness of our

steering procedures, we examine the impact on the steering process from different com-

parison procedures and differing strictness levels in the search constraints.

The outcomes of this research are (1) an automated framework that can be used to execute

the proposed techniques on actual systems, and (2), authoritative studies of the capabilities,

efficacy, and risks of these procedures as applied to industrial-quality software in the real-time

system domain.

1.3 Publications from this Thesis

The following publications have resulted from the research reported in this thesis:

• Gregory Gay, Sanjai Rayadurgam, and Mats P. E. Heimdahl. 2014. Steering Model-Based

Oracles to Admit Real Program Behaviors. In Proceedings of the 36th International Con-

ference on Software Engineering (ICSE Companion 2014). ACM, New York, NY, USA,

428-431.

• Gregory Gay, Sanjai Rayadurgam, and Mats P.E. Heimdahl. 2014. Improving the Ac-

curacy of Oracle Verdicts through Automated Model Steering. In Proceedings of the

29th ACM/IEEE international conference on Automated software engineering (ASE ’14).

ACM, New York, NY, USA, 527-538.
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• Gregory Gay, Sanjai Rayadurgam, and Mats P.E. Heimdahl. 2015. Automated Steering of

Model-Based Test Oracles to Admit Real Program Behaviors. Under submission to ACM

Transactions on Software Engineering & Methodology.

1.4 Structure of this Document

The remainder of this dissertation is organized as follows:

• Chapter 2 presents some background material, including information on test oracles, ex-

amples of model-based oracles, and an extended problem statement.

• Chapter 3 outlines our approach to the search-based steering of model-based test oracles,

detailing the steering process, how state comparisons are made, sources of information

for the constraints on the search process, and an automated method of learning steering

constraints.

• Chapter 4 surveys related work on model-based testing, program steering, and search-

based software testing.

• Chapter 5 details a set of research questions and experimental studies that we use to

evaluate the effectiveness of our oracle steering framework.

• In Chapter 6, we explore the results of our evaluation and discuss thier implications with

regard to the effectiveness of our approach, how it compares to other potential solutions,

the impact of different types of constraints on the search process, and whether effective

constraints can be learned.

• Chapter 7 examines potential threats to validity in our experimental studies.

• Finally, Chapter 8 concludes the dissertation.



Chapter 2

Background

There are two key artifacts necessary to test software, the test data—inputs given to the system

under test—and the test oracle—a judge on the resulting execution [12, 13]. A test oracle can

be defined as a predicate on a sequence of stimuli to and reactions from the SUT that judges the

resulting behavior according to some specification of correctness [2].

The most common form of test oracle is a specified oracle—one that judges behavioral

aspects of the system under test with respect to some formal specification [2]. Commonly, such

an oracle checks the behavior of the system against a set of concrete expected values [14] or

behavioral constraints (such as assertions, contracts, or invariants) [15]. However, specified

oracles can be derived from many other sources of information; we are particularly interested

in using behavioral models, such as those often built for purposes of simulation, analysis and

testing [5].

Although behavioral models are useful at all stages of the development process, they are

particularly effective in addressing testing concerns: (1) models allow analysis and testing ac-

tivities to begin before the actual implementation is constructed, and (2) models are suited to

the application of verification and automated test generation techniques that typically allow us

to cover a larger class of scenarios than we can cover manually [16]. As such, models are often

executable; thus, in addition to serving as the basis of test generation [5], models can be used as

a source of expected behavior—as a test oracle.

Executable behavioral models can be created using many different notations. Presently, we

focus our work on state-transition languages such as Stateflow, Statemate, or other finite state

machine and automata structures [5].

8
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Figure 2.1: Model of software behavior for SimplePacing.

An example of such a model can be see in Figure 2.1. This model, written in the Stateflow

notation [6], represents the behavior of the a simplified version of a pacemaker. The system

takes in two inputs—a sensor reading that represents whether or not a natural heartbeat was

sensed (sense), and the timestamp of the latest sensor reading (timeIn). It uses this informa-

tion to determine, at one-second intervals, whether or not to issue an electrical pulse (a pace) to

the heart chamber that it is implanted into. If a minute 1 goes by without a sensed event from

the sensor, a pace is issued. The output of the software includes the outcome of the pace de-

termination (pace)—issue a pace or do not issue a pace—and the time that the output is issued

(timeOut). In the model, the time that the sensor is polled is the same as the time that output

is issued (timeIn = timeOut). This will not be true in the actual software, but assuming
1A realistic pacemaker, such as the one used in our actual case study, makes decisions at the millisecond level—

we use time values such as a “minute” in this example in order to explain the problems that we are interested in,
rather than to accurately model an actual pacemaker
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Figure 2.2: Illustration of the operating environment of SimplePacing’s implementation.

instantaneous computation time (or a constant computation time) is a common abstration when

modeling. We will refer to this example throughout this work as SimplePacing.

Non-determinism is a major concern in embedded real-time systems. The task of monitor-

ing the environment and pushing signals through layers of sensors, software, and actuators can

introduce points of failure, delay, and unpredictability. Input and observed output values may be

skewed by noise in the physical hardware, timing constraints may not be met with precision, or

inputs may arrive faster than the system can process them. Often, the system behavior may be

acceptable, even if the system behavior is not exactly what was captured in the model—a model

that, by its very nature, incorporates a simplified view of the problem domain. A common ab-

straction when modeling is to omit any details that distract from the core system behavior in

order to ensure that analysis of the models is feasible and useful. Yet these omitted details may

manifest themselves as differences between the behavior defined in the model and the behavior

observed in the implementation.

To give an example of how these differences manifest themselves, consider the actual oper-

ating environment of the implementation of the SimplePacing software depicted in Figure 2.2.

Although the model shown in Figure 2.1 demonstrates the behavior expected from the final Sim-

plePacing system, a number of abstractions have been made. For example, the model receives
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a simple binary sense. However, in the real world, the electrical impulses being sensed in the

heart are complex analog readings, prone to noise. A physical sensor, or even the SimplePacing

implementation itself, will need to take that reading and decide whether it is strong and clear

enough to be considered as an actual sensed event. Similarly, the time stamps used as both input

and output from SimplePacing will be taken by polling a clock module on the computing plat-

form. While the timestamp for the input and output in the model are always the same, this may

not be true for the actual software. Differences may arise from computation time, clock drift,

and the difficulty of synchronizing the parallel components of the software. In systems such as

pacemakers, time is a crucially important piece of data, and delays can lead to a behavior that is

very different from the one produced by a model that abstracts such delays. Furthermore, clock

issues are commonly non-deterministic. Repeated application of the same test stimulus may not

result in the same output if, say, processing time varies. Additionally, while the SimplePacing

model may be executed by itself, the final implementation is simply one subsystem in a larger

pacemaker, and its execution may be impacted by the execution of the other subsystems. It may

not be as easy to isolate the behavior of the SimplePacing module.

As illustrated in Figure 2.3, the behavior of the SimplePacing model and implementation

might differ. In the first test depicted, no sensed events occur. Both the model and the imple-

mentation should deliver a pace every sixty seconds. However, for the actual implementation,

minor computation delays result in a pace being delivered slightly off-schedule. The system

requirements for SimplePacing likely recognize the commonality of such a scenario and pre-

scribe a tolerance period, a bounded period of time where a pace is legal (that is, SimplePacing

is acting correctly if the time between paces, in the absence of sensed events, is no more than

65 seconds). In this case, the implementation—despite the small delay—delivers paces withing

the allowed timing window. However, as the comparison procedure expects the actual times-

tamp to exactly the predicted timestamp, the test will fail. It would not be easy to account for

this difference in the model or behavior comparison, as the behavior at one step of execution

is dependent on the execution history. As can be seen in the first test, the differences between

the model and implementation grow larger as time passes and the delays accumulate. The time

between paces in the implementation is still within the legal period, but the timestamps drift

further from those produced by the model.

In the second test shown in Figure 2.3, the heart sensor picks up an unexpected signal at

timeIn = 110 and registers it as a sensed event. As this was not a planned test stimulus, the
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Figure 2.3: Abstraction-induced behavioral differences between SimplePacing’s model and im-
plementation.

executions of the model and implementation differ significantly from that point. The behavior

of the implementation might be completely legal with respect to the sequence of events that

follow after the additional sensed event, but as the executions of the model and implementation

fail to conform, the test results in a failure. One could argue that picking up that additional

input was, in itself, an error. However, tuning analog sensors is a complex process, and a small

number of false positives may be accepted by testers if the result is never missing a real sensed

event.

This raises the question—why use models as oracles? Alternative approaches could be to

turn to an oracle based on explicit behavioral constraints—assertions or invariants—or to build

declarative behavioral models in a formal notation such as Modelica [17]. These solutions,

however, have their limitations. Assertion-based approaches only ensure that a limited set of

properties hold at particular points in the program [15]. Further, such oracles may not be able to
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account for the same range of testing scenarios as a model that prescribes behavior for all inputs.

Declarative models that express the computation as a theory in a formal logic allow for more so-

phisticated forms of verification and can potentially account for timing-based non-deterministic

behaviors [18]. However, Miller et al. have found that developers are more comfortable build-

ing constructive models than formal declarative models [19]. Constructive models are visually

appealing, easy to analyze without specialized knowledge, and suitable for analyzing failure

conditions and events in an isolated manner [18]. The complexity of declarative models and the

knowledge needed to design and interpret such models make widespread industrial adoption of

the paradigm unlikely.

While there are challenges in using constructive model-based oracles, it is a widely held

view that such models are indispensable in other areas of development and testing, such as

requirements analysis or automated test generation [16, 20]. From this standpoint, the motiva-

tional case for models as oracles is clear—if these models are already being built, their reuse

as test oracles could save significant amounts of time and money, and allow developers to au-

tomate the execution and analysis of a large volume of test cases. Therefore, we seek a way

to use constructive model-based oracles that can handle the non-determinism introduced during

system execution on the target hardware.



Chapter 3

Oracle Steering

In a typical model-based testing framework, the test suite is executed against both the SUT and

the model-based oracle, and the values of certain variables are recorded to a trace file after each

execution step. The oracle’s comparison procedure examines those traces and issues a verdict

for each test (fail if test reveals discrepancies, pass otherwise). When testing a real-time system,

we would expect non-determinism to lead to behavioral differences between the SUT and the

model-based oracle during test execution. The actual behaviors witnessed in the SUT may not

be incorrect—they may still meet the system requirements—they just do not match what the

model produced. We would like the oracle to distinguish between correct, but non-conforming

behaviors introduced by non-determinism and behaviors that are indicative of a fault.

The simplest approach that could potentially address this would be to augment the com-

parison procedure with a filtering mechanism to detect and discard acceptable differences on a

per-step basis. For example, to address some of the computation-induced delays discussed in

Section 2 and illustrated in Figures 2.2 and 2.3, a filter could simply allow behaviors that fall

within a bounded time range to be acceptable, as long as they are the same behaviors predicted

by the model. Such filters are relatively common in GUI or graphic rendering testing [21]1.

However, the issue with filtering on a per-step basis is that the effect of non-determinism may

linger on for several steps, leading to irreconcilable differences between the SUT and the model-

based oracle. Filters may not be effective at handling growing behavioral divergence. While

a filter may be a perfectly appropriate solution for static GUIs, the cumulative build-up of dif-

ferences in complex, time-based systems, will likely render a filter ineffective on longer time
1Filters could easily be implemented using assertion statements checked following the oracle procedure.

14
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scales. Even if that filter was modified to track, say, the average response time for the Sim-

plePacing system of Figure 2.1, the growing difference in timestamps may lead the whole sys-

tem down an entirely different path of execution. If the time of input or output impacts behavior,

such as in the case of a pacemaker—a system where even a single delayed input may impact

all future commanded paces—a filter is unlikely to make an accurate judgment after the first

few comparisons. Therefore, any potential solution to the issues we are concerned with must

account for not just the current divergence between the SUT and the model-based oracle, but

with all previous divergences as well. This is a non-trivial problem, as many systems are now

expected to execute over a long period of time.

To address this challenge, we instead take inspiration from program steering—the process

of adjusting the execution of live programs in order to improve performance, stability, or behav-

ioral correctness [22]. Instead of steering the behavior of the SUT, however, we steer the oracle

to see if the model is capable of matching the SUT’s behavior. When the two behaviors differ,

we backtrack and apply a steering action—e.g., adjust timer values, apply different inputs, or

delay or withhold an input—that changes the state of the model-based oracle to a state more

similar to the SUT (as judged by a dissimilarity metric).

We steer the oracle rather than the SUT because these deviations in behavior result not

necessarily from the incorrect functioning of the system, but from a disagreement between the

idealized world of the model and the reality of the execution of the system under test. In cases

where the system is actually acting incorrectly, we don’t want to steer at all—we want to issue a

failure verdict so that the developer can change the implementation. In many of these deviations,

however, it is not the system that is incorrect. If the model does not account for the real-world

execution of the SUT, then the model is the artifact that is incorrect. Therefore, we can take

inspriation from program steering for this situation—rather than immediately issuing a failure

verdict, we can attempt to correct the behavior of the model.

Oracle steering, unlike filtering, is adaptable. Steering actions provide flexibility to handle

non-determinism, while still retaining the power of the oracle as an arbiter. Of course, improper

steering can bias the behavior of the model-based oracle, masking both acceptable deviations

and actual indications of failures. Nevertheless, we believe that by using a set of appropriate

constraints it is possible to sufficiently bound steering so that the ability to detect faults is still

retained.

To steer the oracle model, we instrument the model to match the state it was in during the
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Figure 3.1: An automated testing framework employing steering.

previous step of execution, formulate the search for a new model state as a boolean satisfiability

problem, and use a powerful search algorithm to select a target state to transition the model to.

This search is guided by three types of constraints:

1. A set of tolerance constraints limiting the acceptable values for the steering variables—

a set of model variables that the steering process is allowed to directly manipulate.

2. A dissimilarity function—a numerical function that compares a candidate model state

to the state of the SUT and delivers a numeric score. We seek the candidate solution that

minimizes this function.

3. A set of additional policies dictating the limits on steering.

In a typical testing scenario that makes use of model-based oracles, a test suite is executed

against both the system under test and the behavioral model. The values of the input, output,

and select internal variables are recorded to a trace file at certain intervals, such as after each

discrete cycle of input and output. Some comparison mechanism examines those trace files and

issues a verdict for each test case (generally a failure if any discrepancies are detected and a pass

if a test executes without revealing any differences between the model and SUT). As illustrated

in Figure 3.1, such a framework can be modified to incorporate automated oracle steering. The

testing process is detailed in Figure 1. Informally, the test framework follows these steps:
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ALGORITHM 1: Testing Process
Input: Model, SUT, Tests
for test ∈ Tests do

stepNumber = 0
for step ∈ test do

previousState = state(Model)
applyInput(SUT, step)
applyInput(Model, step)
Sm = state(Model)
Ssut = state(SUT )
if Dis(Sm, Ssut) > 0 then

instrumentedModel = instrument(Model, previousState)
steer(instrumentedModel, Sm, Ssut)
Snew
m = state(Model)

if Dis(Snew
m , Ssut) > 0 then

verdict = fail
break

end
end

end
verdict = pass

end

1. Execute each test against the system under test, logging the state of certain variables at

each test step.

2. Execute each test against the model-based oracle, and for each step of the test:

(a) Feed input to the oracle model.

(b) Compare the model output to the SUT output.

(c) If the output does not match, the steering algorithm will instrument the model and

attempt to steer the model’s execution within the specified constraints by searching

for an appropriate steering action.

(d) Compare the new output of the model to the SUT output and log the final dissimi-

larity score.

3. Issue a final verdict for the test.

More information about model instrumentation can be found in Section 3.2, and the algorithm

for steering is detailed in Figure 2 (and explained in Section 3.2).
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In the following sections, we will explain the search process in more detail. In Section 3.1,

we describe our assumptions on the format of model used as well as the model format that

we operate on in our implementation of the steering framework. In Section 3.2, we detail the

search process and discuss how it selects a steering action. In Section 3.3, we offer advice

on the selection of tolerance constraints and policies. In Section 3.4, we present a process for

automatically learning candidate constraints from observing unconstrained steering actions.

3.1 System Model

In the abstract, we define a model as a transition system M = (S, S0,Σ,Π,→), defined as:

S is a set of states—assignments of values to system variables—with initial state S0.

Σ is an input alphabet, defined as a set of input variables for the model.

Π is a specially-defined steering alphabet—Π ⊆ Σ—a set of steerable variables—the vari-

ables that the steering procedure is allowed to directly control and modify the assigned

values of.

→ is a transition relation (a binary relation on S), such that every s ∈ S has some s′ ∈ S
with s→ s′.

Any model format that can be expressed as such an M , in theory, can be the target of a

steering procedure. In this work, our models are written in the Stateflow notation from Math-

works [6]. However, many modeling notations can be formulated in terms of a transition system.

The primary difference of this definition from a standard state-transition system is the steer-

ing alphabet, Π. By definition, Π ⊆ Σ. That is, the steerable variables are considered to be

input variables, but not all input variables are required to be steerable. Variables internal to the

model may (and, likely, will often be specified as steerable), but they must be transformed into

input variables for the computation steps where steering is applied. This transformation enables

search algorithms to directly perform steering operations on the variables. On subsequent, unas-

sisted execution steps, the model will be again transformed such that those variables are again

internal to the model.

In practice, we perform test execution and steering by translating models from their native

language into Lustre, a synchronous dataflow language used in a number of manufacturing
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node simplePacing(sense: bool;
timeIn: int)

returns (pace: bool;
timeOut: int);

var
internal1: int;
(...)
internal42: bool;

let
timeOut = (if (not (internal2 = 0)) then internal8 else timeIn);
pace = ((not (internal2 = 0)) and internal7);

internal42 = (true -> false);
internal12 = (if (internal2 = 2) then internal29 else internal16);
internal29 = (if ( not sense) then internal4 else internal27);
internal15 = (if (internal2 = 3) then internal28 else internal19);
internal24 = (if (((timeIn - internal1) > 60) and (not sense)) then timeIn

else internal27);
internal14 = (if (internal2 = 3) then internal32 else internal18);
internal28 = (sense and internal30);
internal19 = ((not (internal2 = 4)) and internal3);
internal17 = (if (internal2 = 4) then internal33 else internal1);
internal13 = (if (internal2 = 3) then internal31 else internal17);
internal33 = (if ( not sense) then internal1 else timeIn);
internal18 = (if (internal2 = 4) then internal34 else internal2);
internal32 = (if ( not sense) then 1 else internal26);
internal5 = (if (internal2 = 1) then internal21 else internal9);
internal8 = (if (internal2 = 1) then internal24 else internal12);
internal9 = (if (internal2 = 2) then internal31 else internal13);
internal25 = (if sense then timeIn else internal1);
internal6 = (if (internal2 = 1) then internal22 else internal10);
internal23 = (((timeIn - internal1) > 60) and ( not sense));
internal26 = (if sense then 4 else internal2);
internal3 = (( not internal42) and internal40);
internal20 = (if (internal2 = 4) then internal35 else internal4);
internal11 = (if (internal2 = 2) then internal28 else internal15);
internal35 = (if ( not sense) then internal4 else timeIn);
internal16 = (if (internal2 = 3) then internal29 else internal20);
internal22 = (if (((timeIn - internal1) > 60) and (not sense)) then 3

else internal26);
internal30 = (( not sense) and internal3);
internal21 = (if (((timeIn - internal1) > 60) and (not sense)) then timeIn

else internal25);
internal27 = (if sense then timeIn else internal4);
internal7 = (if (internal2 = 1) then internal23 else internal11);
internal31 = (if ( not sense) then internal1 else internal25);
internal34 = (if ( not sense) then 1 else internal2);
internal10 = (if (internal2 = 2) then internal32 else internal14);
internal4 = (if internal42 then 0 else internal41);
internal2 = (if internal42 then 0 else internal39);
internal1 = (if internal42 then 0 else internal38);
internal37 = (if (not (internal2 = 0)) then internal6 else 2);
internal36 = (if (not (internal2 = 0)) then internal5 else timeIn);
internal41 = (0 -> pre(timeOut));
internal40 = (false -> pre(pace));
internal39 = (0 -> pre(internal37));
internal38 = (0 -> pre(internal36));

tel;

Figure 3.2: SimplePacing, translated to the Lustre language
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industries to model or directly implement embedded systems [23]2. Lustre is a declarative

programming language for manipulating data flows—infinite streams of variable values. These

variables correspond to traditional data types, such as integers, booleans, and floating point

numbers. A Lustre program—or a node—is the specification of a stream transformer, mapping

the streams of input variables to the streams of internal and output variables using a set of

defined expressions. Lustre nodes have cyclic behavior—at execution cycle i, the node takes

in the values of the input streams at instant i, manipulates those values, and issues values for

the internal and output variables. Nodes have a limited form of memory, and can access input,

internal, and output values from previous instants (up to a statically-determined finite limit).

Figure 3.2 depicts the Lustre translation of SimplePacing, shown in the original Stateflow

format in Figure 2.1. The body of a Lustre node consists of a set of equations of the form

x = expr—as can be seen in Figure 3.2—where x is a variable identifier, and t is the expression

defining the value of x at instant i. Like in most programming languages, expression t can make

use of any of the other input, internal, or output variables in defining x—as long as that variable

has already been assigned a value during the current cycle of computation.

Lustre supports many of the traditional numerical and boolean operators, including +, −,

∗, /, <, >, %, etc. Lustre also supports two important temporal operators: pre(x) and→. The

pre(x) operator, or ”previous”, evaluates to the value of x at instant (i−1). The→ operator, or

”followed by”, allows initialization of variables in the first instant of execution. For example,

the expression x = 0→ pre(x) + 1 defines the value of x to be 0 in instant 0, then defines it as

1 at instant 1—or, the value at instant 0 plus one—and so forth.

Because of the simplicity and declarative nature of Lustre, it is well-suited to model check-

ing and verification, in particular with regards to its safety properties [25]. This also makes it an

ideal language to use as a target for steering because, as we will elaborate on in the next section,

the steering constraints and dissimilarity function can both be encoded directly into the models,

then solved using the same algorithms that are regularly used to prove safety properties over the

programs expressed in the Lustre language.

Additionally, because typical discrete state-transition systems are semantically similar to

Lustre, it is easy to translate from other modeling paradigms to Lustre while preserving the

semantic structure of those models.
2This translation is conducted using the Gryphon framework, licensed from Rockwell Collins [24].
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3.2 Selecting a Steering Action

If the initial comparison of model and SUT states sm and ssut reveals a difference, we attempt

to steer the model. Fundamentally, we treat steering as a search process. We backtrack the

model, instrumenting it with the previous recorded state as the new initial state S0, and seek

a steering action—a set of values for the steerable variables Π that, when combined with the

assigned values to the remaining input variables Σ − Π, transitions the model to a new state

snewm . Note that, if the steering process fails to produce a solution, snewm = sm. The choice of a

steering action is a solution to a search problem where we seek an assignment to the variables

in Π that satisfies the tolerance constraints, minimizes the dissimilarity function, and follows

any additional policies.

The set of tolerance constraints governs the allowable changes to values of the steerable

variables Π. These constraints define bounds on the non-determinism or behavioral deviation

that can be accounted for with steering. Constraints can be expressed over any internal, input,

or output variables of the model—not just the members of Π. Constraints can even refer to the

value of a variable in the SUT.

For example, consider the scenario outlined in the first test in Figure 2.3. We could use

steering to correct this mismatch by signifying timeIn as a member of Π and allowing the

search algorithm to assign a new value to it. However, we want to differentiate allowable time

delays from fault-induced time delays, so we must also set a constraint on the change in value

of timeIn. A reasonable constraint might be to allow the new value of timeIn to fall anywhere

between a minimum of timeInoriginal and (timeInoriginal + 4ms).

This differs from setting a filter to compare the values of sm and ssut because, by changing

the state of the model, we impact the state of the model in future steps as well, allowing us to

match the behavior of the model and the system, while limiting the ability of steering to mask

faults. By adjusting the execution as execution commences, we also eliminate the need to track

the entire execution history, as divergences are accounted for as they appear.

Consider the second test in Figure 2.3. In this test, a spike in electrical interference caused

the SUT to sense an input event that was not an explicit part of the test sequence. Although

this sensitivity to noise might be considered a hardware fault, the software in the SUT acted

correctly in its response to the event. We can use steering to account for this noise as well,

by designating sense as a member of Π and allowing the search algorithm to adjust its value.
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However, letting the steering process freely ignore or create senses might be dangerous, so we

might—for example—set a constraint that if (senseoriginal = 1) then (sensenew = 1). That

is, the search algorithm can indicate that there is a sense when we had not previously indicated

one as part of the test inputs, but the search algorithm can never ignore a sense that was supposed

to be there.

We could also create a constraint that combines multiple members of Π, that takes into

account model variables not in Π, or that depends on the value of a variable in the SUT. For

example, we could establish a constraint on sense that depends on the output variable timeOut

as follows: if ((timeOutsut ≥ timeOutoriginal) and (timeOutsut ≤ timeOutoriginal +

4ms) then ((sensenew = 0) or (sensenew = 1)) else (sensenew = senseoriginal). That is,

we can freely change whether an event was sensed, as long as the value of timeOut in the SUT

is within a certain range of the value of timeOut in the model.

After using the tolerance constraints to limit the number of candidate solutions, the search

process is guided to a solution through the use of a dissimilarity function Dis(model state,
SUT state), that compares the state of the model to the observable state of the SUT. We seek

a minimization of Dis(snewm , ssut). That is, within the bounds on the search space set by the

tolerance constraints, we seek the candidate solution with the lowest dissimilarity score. There

are many different functions that can be used to calculate dissimilarity. Cha provides a good

primer on the calculation of dissimilarity [26]. As we primarly worked with numeric variables,

dissimilarity functions such as the Euclidean distance—the average difference between two

variable vectors—were found to be sufficient to guide this selection. When considering variable

comparisons over—for instance—strings, more sophisticated dissimilarity metrics (such as the

Levenshtein distance [27]) may be more appropriate.

We can further constrain the steering process by employing a set of general policy decisions
on when to steer. For example, one might decide not to steer unless Dis(snewm , ssut) = 0. That

is, one might decide not to steer at all unless there exists a steering action that results in a model

state identical to that observed in the SUT.

To summarize, the new state of the model-based oracle following the application of a steer-

ing action must be a state that is reachable from the current state of the model, must fall within

the boundaries set by the tolerance constraints, and must minimize the dissimilarity function.

This is illustrated in Figure 3.3 for the test step corresponding to the second output event

in the first test in Figure 2.3. The Lustre translation of SimplePacing is instrumented such that
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pace = 0
timeOut = 119

pace = 1
timeOut = 120

sense = 0
timeIn = 120

Original transition taken

Backtrack
Consider possible transitions, 
given constraint:
(timeInnew ≥ timeInoriginal ) and 
(timeInnew ≤ timeInoriginal + 4ms)

pace = 1
timeOut = 121

Chose steering target 
and transition.

Sm, i-1

Sm

Sm
new

sense = 0
timeIn = 121

Dis(Sm,Sm
new) = 5

Dis(Sm,Sm
new) = 0

Dis(Sm,Sm
new) = 2

Figure 3.3: Illustration of steering process.

the initial state matches the state that the model was in, following the application of input in the

immediately-preceding time step. The steerable variable set Π consists of the input timeIn,

with the tolerance constraint that the chosen value of timeIn must fall between timeInoriginal

and timeInoriginal + 4ms. We examine the candidate states, evaluate their dissimilarity score,

then choose the steering action that minimizes this score. We transition the model to this state

and continue test execution.

We have implemented the basic search approach outlined in Figure 2. Our search process is

based on SMT-based bounded model checking [25], an automatic approach to property verifi-

cation for concurrent, reactive systems [28]. The problem of identifying an appropriate steering

action can be expressed as a Satisfiability Modulo Theories (SMT) instance. An SMT instance

is a generalization of a boolean satisfiability instance in which atomic boolean variables are

replaced by predicated expressed in classical first-order logic [29]. A SMT problem can be

thought of as a form of a constraint satisfaction problem—in our specific case, we seek a set

of values for the steerable variables that obeys the set of tolerance constraints and has a lower

dissimilarity score than the original. By negating the set of constraints—asserting that we can

not select a steering action—a bounded model checker can search for a solution to the SMT

instance that proves that we can bring the model into a state more closely resembling that of the
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ALGORITHM 2: Steering Process
Input: Model, Sm, Ssut

if Dis(Sm, Ssut) > 0 then
DisConstraint := λthreshold→ λstate→ Dis(state, Ssut) ≤ threshold
targetState := searchForNewState(Model, Sm, Ssut, Constraints,DisConstraint(0))
if targetState = NULL then

newState := Sm

T := 1
while newState 6= NULL do

targetState := newState
newState :=
searchForNewState(Model, targetState, Ssut, Constraints,DisConstraint(T ×
Dis(targetState, Ssut))
T := 0.5× T

end
end
transitionModel(Model, targetState)

end

system within a limited number of transitions (generally, just a single transition). In this work,

we have made use of Kind [25], a model checker for the Lustre language, and the Z3 constraint

solver [30].

We execute tests using an in-house Lustre interpreter. Each test step is checked explicitly

for conformance violations by comparing the state of the model and the oracle. If a mismatch

is detected, we allow the steering framework to search for a new solution. In order to achieve

this, we explicitly instrument the model such that the current state (before applying the chosen

steering action) is the “initial” state. This instrumentation also embeds the calculation of the

dissimilarity function and the tolerance constraints directly into the model as an SMT instance

that the search algorithm must find a solution to.

An example of this instrumentation can be see in Figure 3.4. If the mismatch occurred after

the first step of execution, any expressions containing a “followed-by” operator (e.g., x = 0→
y), is modified to only contain the right-hand side of the → (x = 0 → y is transformed into

x = y). This is because execution is now past the “initial state,” and thus, the expression needs

to be calculated using the expression that should be used following the first execution step. Any

use of the “previous” operator is also translated out—the pre(y) in x = 0→ pre(y) is replaced

with the stored value of y in the previous step of the execution trace. The replacement of pre

operators with constants eliminates the need to share both the model and trace memory with the
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node simplePacing(sense: bool;
timeIn: int)

returns (pace: bool;
timeOut: int);

var
internal1: int;
(...)
internal42: bool;
concrete_oracle_sense: bool;
concrete_oracle_timeIn: int;
concrete_oracle_pace: bool;
concrete_oracle_timeOut: int;
concrete_sut_pace: bool;
concrete_sut_timeOut: int;
score_new_pace: real;
score_original_pace: real;
score_new_timeOut: real;
score_original_timeOut: real;
score_steered: real;
score_original: real;
prop: bool;

let
timeOut = (if (not (internal2 = 0)) then internal8 else timeIn);
pace = ((not (internal2 = 0)) and internal7);
(...)
internal42 = false;
internal41 = 119;
internal40 = false;
internal39 = 2;
internal38 = 0;

concrete_oracle_sense = false;
concrete_oracle_timeIn = 120;
concrete_oracle_pace = true;
concrete_oracle_timeOut = 120;
concrete_sut_pace = true;
concrete_sut_timeOut = 121;
score_new_pace = (if (concrete_sut_pace != pace)
then 1.0 else 0.0);

score_original_pace = (if (concrete_sut_pace != concrete_oracle_pace)
then 1.0 else 0.0);

score_new_timeIn = (if (concrete_sut_timeIn > timeIn)
then (concrete_sut_timeIn - timeIn) else (timeIn - concrete_sut_timeIn));

score_original_timeIn = (if (concrete_sut_timeIn > concrete_original_timeIn)
then (concrete_sut_timeIn - concrete_original_timeIn)
else (concrete_original_timeIn - concrete_sut_timeIn));

score_steered = score_new_pace + score_new_sense;
score_original = score_original_pace + score_original_sense;
prop = not ((timeIn >= concrete_oracle_timeIn) and

(timeIn <= concrete_oracle_timeIn + 4.0) and
(score_steered < score_original));

--%PROPERTY prop;
tel;

Figure 3.4: SimplePacing, instrumented for steering. Truncated from Figure 3.2 to conserve
space.



26

search algorithm. Instead, we explicitly embed the earlier values of variables.

Constants are also embedded in the model for each input variable and output variable in

the model and each output variable in the SUT describing what occured originally during test

execution. That is, they tell us what happened before we steered. These values are used both

for calculating the value of the dissimilarity score (in the scoreoriginal statement) and in the

tolerance constraints (embedded in the prop statement). All of these expressions are used within

the set of constraints that we want the search algorithm to satisfy in its chosen steering action,

all combined in the prop expression. This expression includes the tolerance constraints—in our

example in Figure 3.4, that the chosen timestamp on input falls within four milliseconds of the

one originally exhibited by the model—and the threshold that we want the new dissimilarity

score to beat. In this case, we want a solution that obeys the tolerance constraint (the timestamp

falls in the chosen interval) and where the state of the model exactly matches the state of the

system, calculated using the Manhattan distance.

The prop expression is negated because we want a counterexample—we assert that the

constraints can not be satisfied, and ask the search algorithm to find a set of values for the

steerable variables that can satisfy those constraints within a single transition. We take the

counterexample offered by the search algorithm, extract the values of the steerable variables,

and replace the original values of those variables in the trace. We then apply the new set of

input (non-steerable inputs that retain their original values, and we append the new values of the

steerable variables) to the instrumented model in the Lustre interpreter, record the new values

of all of the internal and output variables, and continue test execution.

The use of SMT-based complete search techniques is ideal for many Lustre programs be-

cause such solvers can efficiently decide the validity of formulas with linear numerical terms [29].

The main limitation, however, is that SMT-based solvers are limited in their ability to prove

or disprove non-linear mathematical operations within properties. In general, this is not an

issue—the tolerance constraints for a model do not generally need to contain sophisticated mul-

tiplication or division (if either operation is used, it is generally only to multiply or divide by a

constant). We use Microsoft Researcher’s Z3 solver [30] because it was found to offer the best

support for non-linear expressions—enabling the ability to directly calculate certain dissimilar-

ity metrics as part of the process of producing a counterexample.

It should be noted that an SMT solver may not be able to directly minimizeDis(snewm , ssut).

Instead, such solvers will offer any solution that satisfies that constraint—that is, any solution
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that offers a smaller score and satisfies our other constraints. As outlined in Figure 2, we instead

find a minimal solution by first using the constraint Dis(snewm , ssut) = 0—we ask the solver

for a solution where, at least for the compared output variables, Snewm = Ssut. If an exact mini-

mization can not be found, we then attempt to narrow the range of possible solutions by setting

a threshold value T and using the constraint Dis(snewm , ssut) < (T ∗Dis(sm, ssut)). If a solu-

tion is possible, we continue to set T = 0.5 ∗ T until a solution is no longer offered. Once that

constraint can no longer be satisfied, we take the solution offered for the previous—satisfiable—

value of T and iteratively apply the constraint Dis(snewm , ssut) < Dis(sprevious newm , ssut) until

we can no longer find a solution offering a lower value for the dissimilarity function. The best

solution found will be selected as the steering action.

3.3 Selecting Constraints

The efficacy of the steering process depends heavily on the tolerance constraints and policies

employed. If the constraints are too strict, steering will be ineffective—leaving as many “false

failure” verdicts as not steering at all. On the other hand, if the constraints are too loose, steering

runs the risk of covering up real faults in the system. Therefore, it is crucially important that the

constraints to be employed are carefully considered.

Often, constraints can be inferred from the system requirements and specifications. For

example, when designing an embedded system, it is common for the requirements documents

to specify a desired accuracy range on physical sensors. If the potential exists for a model-

system mismatch to occur due to a mistake in reading input from a sensor, than it would make

sense to take that range as a tolerance constraint on that sensor input and allow the steering

algorithm to try values within that range of the canonical test input.

We recommend that users err toward strict constraints. While it is undesirable to spend time

investigating failures that turn out to be acceptable, that outcome is preferable to masking real

faults. Steering will not fully account for a model that produces incorrect behavior, so steering

should start with a mature, verified model.

To give an example, consider a pacemaker. The pacemaker might take as input a set of

prescription values, event indicators from sensors in the patient’s heart, and timer values. We

would recommend that steering be prohibited from altering the prescription values at all, as ma-

nipulation of those values might cover faults that could threaten the life of a patient. However,
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as electrical noise or computation delays might lead to issues, steering should be allowed to

alter the values of the other inputs (within certain limits). The system requirements might offer

guidance on those limits—for instance, specifying a time range from when a pace command is

supposed to be issued to when it must have been issued to be acceptable. This boundary can be

used as to constrain the manipulation of timer variables. Furthermore, given the critical nature

of a pacemaker, a tester might also want to employ a policy where steering can only intervene

if a solution can be found that identically matches the state of the SUT.

Unlike approaches that build non-determinism into the model, steering decouples the spec-

ification of non-determinism from the model. This decoupling allows testers more freedom to

experiment with different sets of constraints and policies. If the initial set of constraints leaves

false failure verdicts or if testers lack confidence in their chosen constraints, alternative options

can easily be explored by swapping in a new constraint file and executing the test suite again.

Using the dissimilarity function to rate the set of final test verdicts, testers can evaluate the

severity and number of failure verdicts remaining after steering with each set of constraints and

gain confidence in their approach.

3.4 Learning Constraints

While it is clear that choosing the correct constraints is essential to accurate steering, it is not

always clear what those constraints should be, or even what variables should be manipulated

by steering in the first place. However, even in these situations, the developers of the system

under test should at least have an idea of whether a test should pass or fail. A human oracle

is often the ultimate judge on the correctness of the produced plans, as the developers or other

domain experts will likely have a more comprehensive idea of what constitutes correctness than

any constructed artifact, even if they are not completely sure of the specific factors that should

lead to that verdict.

There are heavy restrictions on the volume of testing that a human oracle can judge [31].

This is why we wish to employ model-based test oracles in the first place. However, it may be

possible to use human-classified test verdicts to learn an initial set of constraints. We can treat

constraint elicitation as a machine learning problem. We can execute a series of tests against the

SUT, steer with no value constraints at all—the only limitation being what states are reachable

within one transition through changes to the steerable variables—and record information on
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Variables Involved Attribute Values

For each steerable variable How much was it changed? Continuous
For each oracle-checked variable How much did it differ before steering? Continuous
For each oracle-checked variable How much was it changed? Continuous

(class variable) Did steering change the verdict correctly? NotChanged, ChangedIncorrect,
ChangedCorrect

Table 3.1: Data Extracted for Tolerance Elicitation

what changes were imposed by the steering algorithm. If a human serves as an oracle on those

tests, we can then evaluate the “correctness” of steering.

For purposes of constraint elicitation, we care about the effects of steering in two situations:

successfully steering when we are supposed to steer and successfully steering when we are

not supposed to steer. By observing the framework-calculated oracle verdict before and after

steering and comparing it to the human-classified oracle verdict, we can determine what test

steps correspond to those two situations. Using that correctness classification and a set of data

extracted from each test step, we can form a dataset that can be explored by a variety of learning

algorithms. This process is illustrated in Figure 3.5. The data we extract is detailed in Table 3.1.

We can use this extracted set of data to elicit a set of tolerance constraints. A standard prac-

tice in the machine learning field is to classify data—to use previous experience to categorize

new observations [32]. As new evidence is examined, the accuracy of these categorizations is

refined and improved. An example of a classification problem might be the process by which a

test oracle arrives at a “pass” or “fail” verdict in the first place, and one could imagine sophisti-

cated machine learning algorithms replacing traditional oracles completely for certain types of

systems and testing scenarios.

We are instead interested in the reverse scenario. Rather than attempting to categorize

new data, we want to work backwards from the classifications to discover why steering acted

correctly or incorrectly—a process known as treatment learning [33]. Treatment learning ap-

proaches take the classification of an observation and try to reverse engineer the statistical ev-

idence that led to that categorization. Such learners produce a treatment—a small set of data

value boundaries that, if imposed, will change the expected class distribution. By filtering the

data for entries that follow the rules set forth by the treatment, one can identify how a particular

classification is reached.

What chiefly differentiates treatment learning from classification is the focus of the ap-

proach. Ultimately, classifiers strive to increase the representational accuracy by growing a
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...
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“correct” set. Use the resulting set 

as your steering constraints.

Figure 3.5: Outline of learning process.

collection of statistical rules. As a result, if the data is complex, the model employed by the

classified will also be complex. Instead, treatment learning focuses on minimality, delivering

the smallest rule that can be imposed to cause the largest impact. This focus is exactly what

makes treatment learning interesting as a method of eliciting tolerance constraints. We wish

to constrain steering to a small set of steerable variables, with strict limitations on what value

changes are allowed. Treatment learning can deliver exactly this, and can be used to both gen-

erate an initial set of constraints and to tune an existing set of constraints.
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Class Percentage
NotChanged 96%

ChangedIncorrect: 1%
ChangedCorrect: 2%

Table 3.2: Base class distribution

Rank Worth Treatment
1 3.428298 [changeToVariable1=[-4.000000..0.000000]

[changeToVariable2=[1.000000..2.000000]
2 3.384346 [changeToVariable2=[1.000000..2.000000]

[changeToVariable3=[-10.000000..0.000000]
3 3.352951 [changeToVariable2=[1.000000..2.000000]
4 3.352951 [changeToVariable4=[-15.000000..0.000000]

[changeToVariable2=[1.000000..2.000000]
5 3.352951 [changeToVariable2=[1.000000..2.000000]

[changeToVariable5=[-176.000000..0.000000]

Table 3.3: Examples of learned treatments.

Class Percentage
NotChanged 0%

ChangedIncorrect: 14%
ChangedCorrect: 86%

Table 3.4: Class distribution after imposing Treatment 1 from Table 3.3

To give an example, consider the base class distribution after steering a model-based ora-

cle for a set of classified tests and extracting the data detailed above, as shown in Table 3.2.

This sort of base class distribution makes conceptual sense—on many test steps, steering does

nothing. It only kicks in when the oracle and model differ, makes a change, and likely reduces

the number of future steps in the same test case where differences occur. By targeting the class

ChangedCorrect, we can attempt to elicit a treatment that details what happens when steer-

ing acts correctly. We can extract treatments, ranked by their score assigned by the treatment

learner’s objective function. Example treatments are shown in Table 3.3.

The first treatment in Table 3.3 states that the most major indicators of a correct change

are when the value of Variable1 is reduced between 0-4 seconds and the value of Variable2 is

increased by 1-2 seconds. By imposing that treatment, we end up with the class distribution

shown in Table 3.4. This class distribution shows strong support for the produced treatment.

In order to create a set of tolerance constraints, we first create 10 treatments like those seen
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((Variable3 >= concrete_oracle_Variable3 - 10.0) and
(Variable3 <= concrete_oracle_Variable3))

((Variable2 = concrete_oracle_Variable2) or
((Variable2 >= concrete_oracle_Variable2 + 1.0) and
(Variable2 <= concrete_oracle_Variable2 + 2.0)))

((Variable1 >= concrete_oracle_Variable1 - 4.0) and
(Variable1 <= concrete_oracle_Variable1))

((Variable6 >= concrete_oracle_Variable6 - 13.0) and
(Variable6 <= concrete_oracle_Variable6))

(Variable7 = concrete_oracle_Variable7)
(Variable8 = concrete_oracle_Variable8)
...
(Variable20 = concrete_oracle_Variable20)

Figure 3.6: Examples of produced tolerances.

in Table 3.3 using “ChangedCorrect” as our target class (we wish to know what actions steering

takes when it works correctly) and extract all of the individual variable and value range pairings.

Some of these items may not actually be indicative of successful steering—they may be variable

values selected by biases in the algorithm that selects the steering actions that appear in both

correct and incorrect steering. Thus, we also produce 10 treatments using “ChangedIncorrect”

as the target class. This produces a set of treatments indicating what happens when steering

incorrectly changes an oracle verdict. We remove any variable and value range pairings that

appear in both the “good” and “bad” sets, leaving only those that appear in the good set. We

then form our set of elicited tolerance constraints by locking down any variables that constraints

were not suggested for. This results in a set of tolerances similar to that shown in Figure 3.6.

Conceptually, a treatment learner explores all possible subsets of the attribute ranges of

a dataset searching for optimal treatments. Such a search is infeasible in practice, so much

of the effectiveness of a treatment learning algorithm lies in quickly pruning unpromising at-

tribute ranges—ignoring rules that lead to a class distribution where the target class is in the

minority [34]. Notable treatment learning algorithms include the TAR family (TAR2 [33],

TAR3 [35, 36, 37], and TAR4.1 [34])—a series of algorithms utilizing a common core structure,

but employing different objective functions and search heuristics—and the STUCCO contrast-

set learner [38]. Other optimization algorithms have also been applied to treatment learning,

including simulated annealing and gradient descent [34]. For the study in this work, we em-

ployed the TAR3 algorithm, explored further in Section 5.5.



Chapter 4

Related Work

In this chapter, we will discuss three research areas that have informed the idea of oracle steer-

ing: model-based testing (Section 4.1), program steering (Section 4.2), and search-based soft-

ware testing (Section 4.3).

4.1 Model-Based Testing

Model-based testing (MBT) is the practice of using models of software systems for the deriva-

tion of test suites [1]. MBT techniques began to see industrial use around 2000, and by 2011,

significant industrial applications exist and commercial-grade tools are available [1]. Such tech-

niques commonly take a model in the form of a finite-state machine [5] or other labeled transi-

tion system [39]—or another modeling notation that is transformed, “under the hood” into the

appropriate automata structure—and generate a series of tests to apply to the system under test.

An attempt is then made to establish conformance between the model and the system [40]. Of-

ten, the model also serves as the oracle on the test. Test inputs are “executed” against both the

model and the SUT, and the resulting state is compared. However, in some cases, the model may

only be used as a source of test inputs, and a separate oracle may be used. We are concerned

with work where the model serves as the oracle.

Model-based testing is seen as a way to bridge the gap between testing and verification.

Verification is aimed at proving properties about the system through formal reasoning about

models of the system, often with the goal of arguing that the system will satisfy the user’s

33
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requirements [41]. Verification can give certainty about satisfaction of a required property—

often through an exhaustive search of the state space of the model or explicit proof generation—

but this certainty only applies to the model of the system. Any form of verification is only as

good as the validity of the model itself [41]. Testing, however, is performed by exercising

the full implementation of the system. Testing can never be complete—in practice, testing

will only ever cover a tiny percentage of the state space of a real-world system. Testing can

never prove the absence of errors, only their presence. By proving that a model conforms to

the requirements, and demonstrating that the system conforms to the model—by generating

tests from the model and comparing the resulting execution of the system to the behavior of

the model—developers can make a strong argument that the final system also conforms to the

requirements.

Much of the research on model-based testing is concerned explicitly with the generation

of test cases with the goal of demonstrating that the SUT conforms to the model. In this sce-

nario, the model serves implicitly as an oracle on the generated tests, being the basis on which

correctness is judged. In addition to a formal model, these test generation algorithms require

an implementation relationship [42, 43]. A system under test is a complex object that is not

inherently amenable to formal reasoning. Comparing model behavior to SUT behavior is not a

straight-forward task. In many cases, this comparison is only possible by treating the SUT as

a black box that receives input from its environment and, at times, issues output. The system

under test can only be formally reasoned about if the assumption is made that a formal model

of behavior can be extracted from the SUT. That is, if we are to show that the model and system

conform, then the system needs to be expressible in a format that is compatible with the model.

This formal model of the SUT is hypothesized to exist, but is not known a priori [41, 44].

This hypothesis allows us to reason about the system under test as if it were a formal model,

and thus, to express the correctness of that system by establishing a relationship between the

model and the SUT. Jan Tretmans laid much of the groundwork for this field by proposing a the-

ory of test generation for labelled transition systems, based on establishing this implementation

relationship (referred to as ioco) between the model and the system under test [42, 41].

Tretmans theory of implementation relations relies on the expression of the specification

model and SUT as input-output transition systems (IOTS), a special form of labelled transition

systems. A labelled transition system is a structure consisting of states with transitions, labelled

with actions, between them [45, 46]. An IOTS is defined as a 4-tuple (S,s0,L,→), where:
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• S is a finite, non-empty set of states.

• s0 ∈ S is the initial state.

• L is a finite set of labels (actions), partitioned into input (LI ) and output (LU ) actions,

with LI ∩ LU = ø. The actions in L are the observable actions of the system. A special

label τ /∈ L represents unobservable, internal action.

• →⊆ (S × (L ∪ {τ})× S) is the transition relation.

Note that the model format used in steering (described in Chapter 3) can be expressed as an

IOTS by considering an assignment to the input alphabet as an input action and any new assign-

ment to the output and visible state variables as an output action.

The reason for the explicit distinction between input and output actions is because in-

put actions are issued to the system from the environment—they are under the control of the

environment—and output actions are issued to the environment from the system—under control

of the system. A system can never refuse to perform its input actions, and therefore, an IOTS

must be able to accept all input actions in any of its states. Similarly, the environment of the

IOTS can never block an output action. As a result, deadlock is not allowed to exist in IOTS

systems [47]. It is always assumed that a system will eventually issue output. An IOTS supports

a special form of state that cannot produce an output action, and that can only be exited through

new input action. These states represent quiescence—when a system is waiting for new input

to perform an action [47, 20]. The idea of quiescence is essential when modeling real-time or

embedded systems, as such systems often exhibit quiescent behavior. By including these spe-

cial states, quiescence can be treated as on observable event, and testing can ensure that such

periods do not violate the system requirements.

A transition (s, µ, s′) ∈ T can be denoted as s
µ→ s′. A computation is a finite set of

transitions: s0
µ1→ s1

µ2→ s2
µ3→ ...

µn→ sn. A trace, σ, captures a sequence of observable

actions (input and output) during a computation. It follows, then, that the correctness of the

system under test sut, expressed as an IOTS, with respect to a model-based oracle model—

also expressed as an IOTS—is given as the implementation relationship ioco, defined as:

sut ioco model = ∀σ ∈ traces(model) : out(sut after σ) ⊆ out(model after σ) (4.1)

where (sut after σ) denotes the set of states reachable from sut by performing the trace σ.
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Informally, this implementation relation states that the system sut is correct with respect

to the model-based oracle model if, and only if, after all possible traces of model, any output

action performed by sut can also be an output action ofmodel. Demonstrating this relationship

is the basis of much of the subsequent work on model-based testing [48, 49, 50].

Given a behavioral model, a test generation algorithm must produce a set of test cases that

can be used to judge whether the model conforms to the specification according to this imple-

mentation relationship. It is argued that, to firmly establish this implementation relationship,

the test suite must be sound—it must render a failure verdict only if the implementation is in-

correct. Thus, the SUT is generally assumed to execute deterministically. If the SUT is not

deterministic, then soundness cannot easily be established, as a failure verdict might be ren-

dered when the system is acting correctly. In reality, there are many situations where real-time,

embedded, and concurrent systems will act in a non-deterministic manner, complicating the

process of model-based conformance testing. Much of the work on model-based testing relies

on the assumption that the SUT is less deterministic than the model-based oracle [51, 52, 53]. In

practice, this relationship is generally reversed, limiting the applicability of many model-based

testing techniques.

Even if the execution environment does not introduce the unexpected non-determinism that

we are concerned with, this assumption of determinism often prevents the model-based test-

ing of systems with any form of real-time behavior, as such systems invariably exhibit non-

deterministic behavior during normal execution. To get around this limitation, several authors

have examined the use of behavioral models as test-generation targets for real-time systems by

proposing special model formats and modified implementation relationships that support lim-

ited forms of non-determinism [54, 20, 3, 55, 47]. In these cases, the authors propose that

soundness can still be achieved if the model explicitly accounts for the same range of non-

deterministic behavior that the system exhibits. We propose essentially the same relationship.

However, our approach attempts to modify the model during test execution to replicate that

non-determinism, decoupling the model from the additional specification of non-determinism.

Thus, our approach could theoretically be used to extend many of the existing approaches to

model-based testing to handle the non-determinism witnessed during testing of the implemented

system. We will examine several of these related approaches in the Sections 4.1.1 and 4.1.2,

then discuss how our oracle steering approach differs in Section 4.1.3.
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4.1.1 Models with Real-Valued Clocks

Few researchers have examined the practical difficulties of using models to test real-time or em-

bedded systems and the type of issues that arise in such scenarios—such as probe effects from

monitoring overhead, computation delays, and sensor inaccuracy [56]. However, many of these

issues manifest by introducing non-determinism in the timing behavior of these systems, and

a number of researchers have examined model-based testing of systems with real-time behav-

ior [20, 3, 55, 47, 57, 58]. If such work can be used to verify the expected timing behaviors of

a system, it can also theoretically be adapted to account for certain timing issues that introduce

unexpected non-determinism into the system under test.

In order to perform verification of real-time systems, several different model formats have

been proposed that allow the examination of timing behaviors. Informally, the proposed mod-

eling formats tend to be automata structures similar to Tretmans’ IOTS transition system with

the addition of real-valued clock variables [59]. Such automata can remain in a particular state

for a variable period of time, guided by timing constraints that guard the transitions.

While sophisticated verification of properties can be performed on non-deterministic mod-

els, establishing conformance between the model and SUT is still more complicated. When

model-based oracles allow non-determinism, the generated test cases cannot form a linear trace,

but instead form a tree adapted to the actions of the SUT [20]. This results in an exponential

increase in the difficulty of establishing conformance, as the reachable state space at any given

point in execution is massively increased over that of a deterministic model. Therefore, the

majority of model-based testing approaches for real-time systems attempt to restrict the amount

and type of allowed non-determinism [3, 60, 61]—restricting the use of clocks, clock resets, or

timing-based guards.

As currently implemented, our approach begins with a deterministic model and introduces

the ability to handle non-determinism through the steering process. The degree of allowed

non-determinism is determined through the user-specified constraints. As steering progresses

one test step at a time—rather than attempting to check the correctness of the entire trace at

once—our approach should be able to account for a large variety of non-deterministic behaviors

without suffering to the same extent from the branching problems that limit these model-based

testing frameworks. In practice, however, as loose constraints will often lead to faults being

covered, we expect users to limit the non-determinism that steering will allow (also easing the

process of establishing conformance).
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Figure 4.1: An Uppaal version of the SimplePacing model that delivers a pace deterministically
after 60 seconds without a sensed heartbear.

Our hypothesis is that, regardless of strengths or weaknesses of the testing framework em-

ployed, developers would naturally restrict the allowed non-determinism when testing systems

of the type we are primarily interested in. Non-determinism is not generally a desired property

of a safety-critical system—in some cases, it is expected, but developers naturally will desire

that a medical device or avionics system acts in a predictable manner. If there is risk of harm,

then a system must be controlled. Although our approach could be used, in theory, to extend

these non-deterministic models to handle the additional non-determinism introduced in the SUT

during real-world execution, we would still expect the additional allowable non-determinism to

be minimal.

UPPAAL-based Approaches

UPPAAL is a framework for modeling, simulation, and verification of real-time systems, devel-

oped as a collaboration between Aalbord University and Uppsala University1 [62]. The frame-

work can be used to model systems as collections of parallel non-deterministic processes—

written as timed automata [59] with finite structures and real-valued clocks—that communicate
1Available for download from http://www.uppaal.org/

http://www.uppaal.org/
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through channels and shared variables. UPPAAL is often used to model real-time parallel sys-

tems such as communication protocols. The widespread use of UPPAAL for verification of

real-time systems [62, 63, 64, 65, 66] also makes it appealing as a format for testing those same

type of systems [20, 57, 56].

UPPAAL models are written in a non-deterministic guarded transition language with support

for data types including binary channels, bounded integers, and real valued clocks. A system

is a network of timed automata, where the state of the system is defined by the location of all

automata, the values of the shared clock variables, and the values of all of the discrete variables.

Every automaton may transition or synchronize with another automaton, which leads to a new

state. From a given state, an automaton may choose to take an action or a delay transition.

Depending on the chosen delay, further actions may be forbidden. The network of automata

may share clocks and actions.

An UPPAAL version of the SimplePacing system depicted in Figure 2.1 is shown in Fig-

ure 4.1. This version of the model is deterministic in the sense that, without heart input, it

will deliver a pace every 60 seconds. This is accomplished through (1) the clock guard on the

transition between “Waiting” and “Pace” allowing a pace no sooner than 60 seconds from the

last clock reset and, (2), the clock invariant on the Waiting state forcing the transition to an-

other state after no more than 60 seconds. This model, in its current form, is not useful for

testing purposes if scenarios like those depicted in Figure 2.3 occur, causing output to occur

after a non-deterministic timing delay in the SUT. If we want to account for this difference in

the model, we must allow the model to act non-deterministically.

A version of the UPPAAL SimplePacing model with non-deterministic pacing is shown in

Figure 4.2. In this version, the invariant on the Waiting state asserts that the model must transi-

tion to another state within 65 seconds of the last clock reset. This, combined with the guard on

the transition to Pace, means that the model may deliver a pace anywhere between 60 and 65

seconds after the last sensed heartbeat. This allows us to account for a short timing delay in the

SUT, while also defining the limit of what is to be accepted.

This simple model is still incomplete—it requires a source of input. Multiple branches

are marked with the expression “sense?.” This is what is known in UPPAAL as a channel

synchronization. The SimplePacing automaton (and final system) listens for senses from a

heart—a simulated heart during testing. The expression sense? indicates that this transition

can be taken if a true value is broadcast to the listener over the “sense” channel. To perform
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Figure 4.2: An Uppaal version of the SimplePacing model that delivers a pace non-
deterministically between 60 and 65 seconds without a sensed heartbeat.

Figure 4.3: An simple timed automaton that sends a heartbeat to SimplePacing non-
deterministically at any clock point more than 45 seconds after the last clock reset.

verification or testing, we need a source of input to that sense? listener. We can provide

this by defining a second timed automaton that represents the heart. A simple heart model

is pictures in Figure 4.3 that can send a sense at any point (chosen non-deterministically) as

long as 45 seconds have elapsed since the last clock reset. This timed automata forms part of

a network along with SimplePacing, sharing a clock and broadcasting sense events through

the sense! channel synchronization. A common paradigm for verification in UPPAAL is to

specify both the system and its environment using timed automata. Testing frameworks based

on Uppaal can use a similar approach to provide test input to the model-based oracle or to

constrain the non-determinism in the original system model to a limited form that reflects the



41

testing conditions [57].

This simple pacemaker example demonstrates that, in principle, timed automata models

could be used to address a subset of the problems we are concerned about that introduce non-

deterministic behavior into the system under test. In practice, there are several practical issues

that make building the non-determinism induced by execution reality directly into the model

unappealing. We will touch more on those in Section 4.1.3.

Larsen et al. proposed an approach for conformance testing of real-time systems using UP-

PAAL [20] (later extended in [57]). In their approach, given an abstract formal model of the

behavior of the system written in UPPAAL, their test generation tool automatically explores the

state-space of the model to generate test cases that can be executed against the SUT. Many

model-based test generation frameworks execute tests against the model and SUT indepen-

dently, perform the behavioral comparison offline. Their framework, UPPAAL-TRON, executes

test online—combining test generation and execution. A single test input step is generated from

the model at one time, which is then immediately executed againt the SUT. This process contin-

ues until an error is detected or the test generator decides to end the test. Online testing can be

advantagous, as it allows for fewer constraints on the non-determinism expressed by the model.

As discussed above, many model-based testing tools require that non-determinism be restricted

while testing because of an exponential growth in the reachable state-space of the SUT. Online

testing can automatically adapt to the current stage of execution, and—as a result—can reduce

the state space to a manageable size.

UPPAAL-TRON replaces the environment of the SUT and stimulates and monitors the sys-

tem. Based on timed sequences of input and output actions performed so far, it generates input

to the SUT that is deemed relevant by the oracle model. Their approach—a generalization of the

TORX framework [48] to real-time systems—continually computes the symbolic set of states

that the model can occupy after the observations made so far. UPPAAL-TRON monitors the

output of the SUT and checks conformance of the system output to the behavior specified in the

model. Larsen et al. propose an implementation relation for establishing conformance that ex-

tends Tretmans ioco to include time-bounded quiescence. The inclusion of a more sophisticated

quiescence model allows complex timing behaviors to be compared.

In order to generate tests and establish conformance, UPPAAL-TRON requires that the sys-

tem model by combined with an additional environment model (similar to the SimplePacing

and heart model example given above). The non-deterministic behavior of the system model is
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constrained by the environment model to reflect the allowable behavior of the SUT in the envi-

ronment it lives in. This idea is conceptually similar to our steering framework, but progresses in

an opposite direction. Their assumption is that you have a model with large amount of freedom

to select behavior non-deterministically, and that it should be constrained to match the expected

environment. Our steering approach starts with a deterministic model (or, theoretically, with

limited non-determinism) and transforms that to match the environmental reality.

Building an online testing framework does allow greater freedom in expressing timing-

based non-determinism than many other model-based testing frameworks, but comes with its

own limitations. Online testing requires keeping the SUT, test generation code, monitoring

scaffolding, and the model-based oracle in lockstep during execution. This is a challenging task,

and risks introducing probe effect—where the overhead from monitoring alters the behavior

of the SUT. Online testing requires fast computation of expected behavior and the behavior

comparison conducted by the test oracle, and therefore, can either limit the complexity of the

model and test generation code, or limit the complexity of the SUT for which the approach can

be applied. In practice, their testing approach did add latency and uncertainty to the timing of

events, and after realizing this, they had to build an additional two second tolerance window

into their case example [57].

Another interesting framework for model-based testing of real-time systems based on UP-

PAAL’s timed automata was introduced by Rachel Cardell-Oliver [56]. Because of the non-

deterministic nature of real-time systems, and because test infrastructure and monitoring over-

head may intoduce additional timing non-determinism, Cardell-Oliver—like us—contends that

it is not realistic to expect an exact match between the behavior of the SUT and traditional test

oracles. Rather than generating tests from a model of the system, Cardell-Oliver’s approach is

based on expressing abstract test specifications as UPPAAL timed automata. These test speci-

fications are transformed into program code for executing concrete tests and checking whether

the SUT conforms to the expected behavior encoded into the test specification model.

Traditional test generation frameworks specify a test case as a particular series of inputs and

outputs. Non-deterministic behavior makes this impractical. Instead, Cardell-Oliver’s frame-

work specifies input and output behaviors as parallel processes and uses program clocks and

additional offline analysis to check whether the behavior exhibited by the SUT satisfies both the

functional and timing behaviors built into the test specification. Because their tests are hand-

crafted, they can tune a test to one particular function of the system—perhaps enabling them to
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more easily account for the non-determinism introduced to that function by the environment or

hardware platform. Their approach even allows for interactive execution, where a human opera-

tor provides input to the system (a major source of timing non-determinism—humans can rarely

perform a task multiple times with identical timing). However, because each test must be hand-

built, their approach suffers from a severe manual limitation that is addressed by frameworks

that make use of a model of the system and generate tests from that model.

Other Timed Automata

Briones and Brinksma have presented their own extension to Tretmans’ ioco implementation

relation for real-time systems, along with a test generation algorithm [47]. Their extension,

which is intended to be more general than Larsen et al.’s UPPAAL-based approach [20, 57], is

based on an operational interpretation of the notion of quiescence. By treating quiescence as a

special form of output, behavioral traces can include observations of these periods. This means

that implementation relations—such as ioco—can be extended to account for non-deterministic

timing of output behavior as long as the model-based oracle can also produce the same quiescent

period. This interpretation of quiescence gives rise to a family of possible implementation

relations parameterized by observation durations for the quiescent period.

The authors introduce a version of Tretmans’ IOTS automata for real-time systems, called

a Timed Input-Output Transition System (TIOTS). Real-valued timing properties are added to

the model through the notion of time-passage actions—actions that take time. All other actions

are still considered to take place instantaneously. Transitions must also satisfy certain timing

properties—for example, if two different transitions exist from one state to another, they must

take the same amount of time to perform. If input arrives, then it must be accepted immediately

without additional timing delays. This retains Tretmans’ requirement for input enabledness,

but may not reflect all real-world execution scenarios. In contrast to Tretmans’ untimed case,

time delays can change system state without the application of new input. This allows the

testing of real-time systems that can demonstrate the same behavioral phenomena. In order

to demonstrate conformance in real-world testing, all timing-related behaviors must have a

maximum quiescence period. Their test-generation framework generates tests randomly, by

recursively choosing one of three test actions: (1) termination, (2) generation of an input, or (3),

observation of output (or quiescence). This test generation approach is sound with respect to

the set of implementation relations.
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En-Nouaary et al. have also introduced a model-based testing framework for real-time sys-

tems [3]. Their approach is based off of models specified as Timed Input Output Automata

(TIOA)—a format that is, like UPPAAL, dervied from timed automata [59]. TIOA, like the

UPPAAL model format, models systems using automata with shared, real-valued clocks that

increase synchronously at the same speed until reset. Models expressed as TIOA are non-

deterministic, and this makes establishing conformance challenging. In order to test the com-

plex implementations, their approach is based on using state characterization to partially deter-

minize the model. Their approach samples the state space of the model at a user-specified level

of granularity and constructs a testable subautomaton (called the Grid Automaton). The Grid

Automaton is then transfomed into a special timed finite state machine, that is fed to a test gen-

eration algortihm. Test generation is performed through the Wp-Method, a common algorithm

for test generation using finite state machines [67].

The testing framework presented by En-Nouaary et al. is potentially of limited applicability

to handling the non-determinism introduced to the SUT during real-world execution. In order to

operate efficiently, their framework places strict limitations on the non-determinism that can be

modeled—limiting the number of active clocks, the scale of the non-determinism, and the size

of the state space of the SUT. However, what makes their work relevant is the authors detailed

examination of the faults expected from real-time systems.

Their fault model makes a distinction between timing-based faults and the traditional action

and transition faults [68]. Timing faults are further distinguished as effective and non-effective

faults, where effective faults are timing issues that impact the execution of the system. Timing

faults are generalized to one of three issues:

• Clock Reset Faults: When clocks fail to be reset in the SUT when they are in the model,

or if the SUT resets a clock that is not reset in the model.

• Time Constraint Restriction Faults: When the SUT rejects input satisfying a time con-

straint that is accepted by the model.

• Time Constraint Widening Faults: When the SUT increases the upper bound or decreases

the lower bound on a timing constraint.

The timing non-determinism added to the implementation systems in our case study were added

manually after considering potential problems seen in previous real-world applications. It would
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be ideal, in future work, to create an approach to automated seeding of timing faults—similar

to our automated approach to seeding functional faults (see Section 5.2). En-Nouaary’s catego-

rization of timing faults could be used as the basis for the automated seeding of timing faults

for future experimentation with steering and other testing approaches to real-time systems.

4.1.2 Other Model-Based Approaches

Savor and Seviora contributed one of the earliest research efforts on developing model-based

oracles for real-time systems [55]. Their approach is based on monitoring the execution of the

system. A supervisor model—a finite state machine derived from the requirements—is fed the

same inputs that the SUT receives. An expected behavior is returned from the model, which

is added to an expected behavior buffer. The observed SUT behavior is added to an observed

behavior buffer. Over time, a matching system compares expected and observed behaviors from

these buffers. The use of these two buffers allows for varying complexity in the behavior com-

parison procedure. There is a trade-off in the computational complexity of monitoring the SUT

and the latency of failure reporting. Thus, their monitors support both online (results checked

during execution) and offline testing (results buffered and compared at the speed that the speed

that they can be computed at). If failure detection must be reported immediately after the error

appears, then the oracle model cannot be complex—it should be as deterministic as possible. If

failures can be checked out of step with the system execution, then more sophisticated models

can be employed.

Savor and Seviora briefly discuss the dangers of non-determinism. In their modeling no-

tation, a network of processes grouped in a block communicate through zero-delay signal

routes—communication takes place instantaneously—while processes in different blocks com-

municate through indeterminate-delay channels. These channels are a major source of non-

determinism, occurring when signal routes merge. Their modeling notation—SDL—was pri-

marly designed for modeling of communication protocols [69], and the authors primarly focus

on non-determinism in process communication. The authors advise that the model employed

within the oracle must be able to consider all legal behaviors allowed under non-determinism

in the specification, but warn that such non-determinism could result in significant oracle time

and space complexity. To preserve ordering for out-of-time comparisons, signals are appended

with an occurrence interval that gives an interval during which inputs to or outputs from the

SUT could have taken place. Their monitor uses this information to construct legal orderings of
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events, and a belief-creation algorithm filters these orderings and constructs hypotheses about

legitimate observable behaviors of the SUT.

Arcuri et al. have proposed a framework for testing real-time systems that explicitly takes

the environment into account [54]. Their approach actually does not model the system at all,

but instead models the environment as a network of parallel state machines, and uses those

state machines for test generation and as oracles during test execution. The rationale for this

approach is that, because the environment provides input and reacts to the output of systems,

then effective testing relies more on an understanding of how the environment of a system

works. By modeling the environment, Arcuri et al. argue that testing can still capture the

correct behavior of the system while better accounting for unexpected environmental influence

on the execution of the system.

Their approach allows system testers—who may not know the system design, but do know

the application domain—to model the environment for test automation. These models are then

used for code generation of an environment simulator, selection of test cases, and evaluation

of the results. In their work, executing a test case is actually an execution of the environment

simulator. The models then serve as test oracles during execution of the environment simulation.

Within these environmental models, there are error states that should never be reached during

execution of a test case. These error states reflect unsafe, undesirable, or illegal states in the

environment. Their environment simulator can model certain forms of non-determinism. For

example, a timeout transition could be triggered within a minimum and maximum time value.

This allows the modeling of real-world scenarios where there is a natural variance when time-

related behaviors are represented. Probabilities can also be assigned in the model to represent

failure scenarios such as hardware breakdown. In the authors’ framework, the input data for a

test case includes the choice of actual values to use in these non-deterministic events. In their

models, non-deterministic situations can only occur in the transitions between states. As such

transitions can take place multiple times, for each instance of the state machines, for each non-

deterministic choice, they define in the test case a range of possible values. Thus, the values

chosen for the simulated non-determinism may not reflect the same non-determinism seen in

the real world. However, this partial separation of non-determinstic scenarios from the chosen

likelihood of occurrence allows for easier adjustments to match the real-world observations than

some of the other modeling formats examined previously.
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SpecExplorer is a framework for testing reactive, object-oriented software systems, devel-

oped by Microsoft Research [10]. This framework differs from many of the other frameworks

discussed because it is primarily intended for testing. The other approaches take models and

tools used for verification and repurpose them to be used in testing. This difference allows Spec-

Explorer to be used with models that would otherwise be too large and complex to be utilized

in formal verification.

The inputs and outputs of object-oriented systems can be abstractly viewed as parameterized

action labels. Thus, in SpecExplorer, state transitions can take the form of method invocations,

with object instances and complex data structures as input and return values. From the testers

perspective, the SUT is controlled by invoking methods on objects and monitored by observing

invocations of other methods. Because the state space of a model may be infinitely large in

an object-oriented framework, SpecExplorer reduces this space during test generation by sepa-

rating the description of the model state space and finitizations provided by user scenarios and

earlier steps in the test execution.

SpecExplorer is designed to incorporate non-determinism—anticipating issues related to

parallel process communication and timing delays in output. The framework handles non-

determinism by distinguishing between controllable actions invoked by the tester and observ-

able actions that are outside of the testers control. While SpecExplorer could be used to account

for some

What makes SpecExplorer relevant to our oracle steering framework is that SpecExplorer

makes use of a form of model steering during the test generation process. These steering actions

are used to selectively explore the state transitions of the model, resulting in test cases that are

specialized for various goals that the user wants to achieve. The model is executed by choosing

input actions, guided by user-specified testing scenarios. The user-controlled methods include:

• Parameter Selection: Testers can write expressions that constrain the selection of input

method invocations and parameter values.

• Method Restriction: Testers can require that certain preconditions be met before an action

is taken. For example, in a chat application, method restriction could prevent messages

from being sent until all clients have been created and have entered the chat session.

• State Filtering: Testers can use filters to avoid certain states. In a chat application, a state

filter could prevent the same message from being posted more than once.
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• Directed Search: Weights can be applied to states to help direct test execution. Addi-

tionally, tests can be steered to achieve certain user goals, such as covering a minimum

number of transitions.

Although Spec Explorer also makes use of steering to guide the execution of behavioral

models, their application and goals differ from ours. They use steering to create tests, but the fi-

nal test cases are effectively deterministic. Steering is not applied when checking conformance.

As with the other approaches to model-based testing discussed in this chapter, SpecExplorer

may be able to address some of the issues we are concerned with. However, any allowable

non-conformance must be anticipated during test creation. Thus, their framework suffers from

the same limitations that we will discuss in Section 4.1.3.

4.1.3 Comparison to Oracle Steering

By incorporating a sophisticated model of time or other forms of non-determinism, several

of the modeling frameworks examined in this chapter could account for a subset of the non-

deterministic behaviors induced during real-world execution of the system under test—particularly

variance related to timing issues. For example, if a computation delay can result in a pace being

delivered off-schedule in a pacemaker being tested, than a timed automata could be crafted as

an oracle that allows that pace to occur at any point within a bounded window of time. This is

a powerful addition to standard state-transition systems, and such models could—in theory—

account for some of the same problems that steering accounts for. However, that power comes

at a practical cost—the model must be built with those execution behaviors in mind.

There is a difference between building a model to account for planned non-deterministic

behavior detailed in the system requirements and building a model that also accounts for pos-

sible non-determinism introduced to the SUT to use in conformance testing. If the system is

expected to demonstrate some level of non-determinism in its functional behavior, then this

non-determinism can be planned for and modeled. As such variation is planned for, then it

is relatively unlikely that the model will need to change when testing the completed imple-

mentation. If the implementation doesn’t conform to the model, then the requirements are not

being satisfied. Tests that fail to demonstrate conformance—in the absence of the additional

non-determinism that we are concerned with—indicate defective behavior in the system.
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In contrast, the situations that we are concerned with will change the behavior of the sys-

tem. That behavior may still satisfy the requirements, but as it does not conform to what the

model predicts should happen, the test will fail. These situations can be deterministic or non-

deterministic, but in either case, they depend specifically on the particular details of the real-

world execution. Such details are difficult to anticipate, and decisions need to be made at the

time that the model is constructed. If the model is built—as many of them are—during the

requirements engineering phase of development, then it is difficult, if not impossible, to make

the correct assumptions. Many of the behavior differences between model and SUT induced

by non-determinism depend on the hardware being employed and the sophistication of the code

written for the implementation.

If such assumptions are made and end up being incorrect, then making changes to the model

may require a complete overhaul of the models structure—a potentially arduous task. Consider

the simple UPPAAL model in Figure 4.2. In this case, a desire to allow a six second window

on pacing would require changing the invariant on the state “Waiting” to time <= 66. In a

model this simple, this is not a painful task. However, in a more complex model, making such

changes might require adjusting many different invariants on states and guards on transitions.

These invariants and guards may have been designed to model the combined product of multiple

timing-based behaviors, and adjusting those would require clear understanding of how all of

those behaviors and the non-determinism introduced by the SUT’s environment interact. This

task may need to be performed on a regular basis as the system hardware or software evolves.

The alternative is to wait until the implementation is ready to be tested to build the model-based

oracle. This is also an inefficient outcome if the model would be useful for early-lifecycle tasks

such as requirements analysis. A large degree of manual effort is required when modeling. The

ability to reuse a model built for requirements analysis during testing would be welcome.

In addition to the potential difficulty in adjusting the model to account for reality-induced

non-conformance, there is an argument to be made for not building these details directly into the

model in the first place. Being forced to incorporate the reality-induced non-deterministic be-

havior of the SUT into a model that is being built during requirements engineering may distract

from the core purpose of the model at that time—to analyze the functional behavior of the sys-

tem to be built. Effective requirements analysis requires clarity. This is why Miller at al. have

found that engineers are more comfortable with building deterministic models—particularly in

visual formats—over mathematical or non-deterministic models [70]. Such models are easy to
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build, easy to read and understand, and can be used to explain the system behavior to other

engineers, users, and management without requiring a deep understanding of the system.

This is not an argument against using non-deterministic models—timed automata can, and

should, be used in cases where their real-valued clocks and timing model are needed to verify

the correctness of the core functionality of the system requirements for systems with complex

time-dependent behavior. Rather, there is an argument to be made that being forced to also take

into account non-determinism induced by the real-world environment could muddle the clarity

of the model, making the analysis of the requirements more difficult and potentially leading to

an incorrect implementation. Abstraction allows engineers to reason about requirements and

system properties in a clear manner, then to clearly explain those properties of the system to

others. Such models can be reused to generate tests intended to cover certain system states and

behaviors, and in some cases, even to generate source code. This is a large part of the appeal

of frameworks such as Simulink and Stateflow. Even if a more complex non-deterministic

model, built in a framework such as UPPAAL, is needed to analyze functional behavior, allowing

engineers to abstract away execution details will likely lead to clarity in requirements analysis

and a more stable development process.

Through the use of a specification of the tolerance constraints, we effectively decouple

the model from the rules governing conformance. This decoupling makes non-determinism

implicit and the approach more generally applicable. Explicitly specified non-deterministic

behavior—as required by the model-based approaches described above—would limit the scope

of non-determinism handled by the oracle to what has been planned for by the developer and

subsequently modeled. It is difficult to anticipate the non-determinism resulting from deploying

software on a hardware platform, and, thus, such models will likely undergo several revisions

during development.

Steering instead relies on a set of rule-based constraints that may be easier to revise over

time. If the assumptions made on the non-conformance introduced in the real-world prove to

be incorrect, or the developers wish to impose different limitations on what is considered to

be correct execution, then changing that criteria is as easy as writing a new set of tolerance

constraints and using those when steering. The model itself rarely needs to be changed directly.

Instead, the steering process can automatically use the constraint set to adjust the model during

execution. Therefore, steering allows clarity to be retained during modeling, and allows the

reuse of models for multiple development purposes.
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Additionally, by not relying on a specific modeling format, steering can be made to work

with models created for a variety of purposes. By not being tied to a specific test generation

framework, we can make use of tests from a variety of tools, or more easily build steering

into a number of existing frameworks. Many of the existing approaches to model-based testing

propose both a modeling format and specific test generation framework. This is because their

conformance relationship requires a compatible model. In contrast, the intent of our approach

is more general. Our steering approach requires that tests exist, but imposes no requirements

on the source of such tests. We take non-determinism into account explicitly during the test

execution stage when we attempt to steer the model. By exploring non-determinism during

execution, our approach allows more freedom in the generation of tests. In fact, our approach

should be compatible with many of the frameworks discussed above for testing real-time sys-

tems. Regardless of the source of model or tests, if the model and system fail to conform when

the system is still meeting its requirements, these model-based testing frameworks could in-

corporate a steering step during test execution to expand the behaviors allowed without making

changes to the fundamental structure of the model. In many situations, this could be a preferable

alternative to editing the model itself.

4.2 Program Steering

Program steering is the capacity to control the execution of a program as it progresses in or-

der to improve performance, reliability, or correctness [22]. Program steering typically comes

in two forms—dynamic, or automatic steering, and interactive, where a human operator steers

the program through some sort of interface [9]. The majority of research in dynamic program

steering is concerned with automatic adaptation to maintain consistent performance or a certain

reliability level when faced with depleted computational resources [22]. The use of steering to

adjust program values is typically left to the domain of interactive program steering; however,

there is some work of interest in this area as applied to software testing and monitoring. For ex-

ample, Kannan et al. proposed a steering-based framework to assure the correctness of software

execution at runtime [71].

The goal of their framework is to serve as a supervisor on program execution, checking ob-

served behaviors against certain properties (this can be thought of as a form of invariant-based

oracle), and adjusting the behavior of the program if a property is violated. Their framework
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is an attempt to bridge formal model verification and testing. Verification is often infeasible

on large systems (without greatly weakening the model), and as it is based on formal models,

does not always ensure the correctness of a particular implementation. By incorporating the

requirements-based properties used in formal verification into the execution monitor and steer-

ing, an attempt can be made to force the system to conform to its requirements. Their framework

accomplishes steering through the use of three scripting languages. These languages specify

what to observe from the running program, the requirements that the program should satisfy, and

how to steer the program to a safe state when it fails to conform to these requirements. They use

multiple languages in order to maintain a clear separation between the implementation-specific

description of monitored objects and the high-level requirements specification.

The framework attempts to steer the SUT when a deviation is observed between the system

execution and the requirements-based properties. The requirements of the system are expressed

in terms of a sequence of abstract events (or trace). A monitoring script describes the mapping

from observations to abstract events. A monitor uses this script to decide what and how to take

readings from the SUT to extract abstract events. A checker verifies the sequence of abstract

events with respect to the requirements specification, detects violations, and generates a “meta-

event” as a result. A steerer uses the sequence of meta-events to decide how to adjust the

system dynamically to a safe state through control events. Steering is conducted through the

tuning of a small set of parameters. After a violation is detected, steering actions alter the state

of the system until the violated properties are no longer false. This steering is done under the

assumption that the SUT is mostly correct, and that only minimal control should be exercised. It

should be noted that their use of steering is not necessarily to influence the testing process (if a

property is violated during testing, it should be investigated whether or not it can be corrected),

but is primarily intended for use after a system has been deployed to help correct for unexpected

deviations from correct behavior.

Although their system bears similarities to what we are proposing, our goals are very

different—we are not attempting to correct system behavior. We simply wish to identify the

deviant behavior. Our goal, rather than to apply program steering, is to steer the oracle. This

difference in goals and implementation frameworks also leads to a differences in the proposed

techniques, which we will discuss further in Section 4.2.1.

Lin and Ernst proposed the steering of multi-mode systems—systems that base operational
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parameters on a series of discrete modes, such as power management systems on laptops—

making use of steering actions that force mode changes when the system is faced with unfore-

seen inputs and operating scenarios [72]. In addition to ensuring that defects in the system are

corrected, the authors propose using the testing process to train their program steering method.

The proposed mode selector examines data from a series of successful tests and derives rela-

tionships between operation modes and the situations in which those modes should be applied.

In new situations where the system is either failing or under-performing, the mode selector

can override the system’s choice of operational mode with a new mode that the selector deter-

mined would better fit the examined scenario. This mode selector is a form of fault-tolerance,

the practice of programs gracefully adjusting their behavior once a fault or failure has been

detected [73]. Their approach could, in theory, be used to augment a system model or the or-

acle steering process rather than the actual system under test. For instance, we could use their

learning approach to “cache” common steering actions. Then, rather than searching for a can-

didate steering action across the entire state space, steering could be sped up by first examining

“common” steering actions.

4.2.1 Comparison to Oracle Steering

Program steering has been used in the past to correct the behavior of systems deemed to have

deviated from their expected behavior [71]. In situations where a model-based oracle and the

system fail to conform, it may be possible to steer the system to conform to the model. How-

ever, instead of attempting this, we attempt to steer the model to match the system under test.

While steering of the oracle model is risky—the model is intended to serve as our idea of

correctness—we conduct model steering for two reasons: for finer control of the steering pro-

cess, and importantly, to better account for the source of the deviation.

In the first case, direct monitoring and steering of the system under test is not always pos-

sible in embedded or real-time systems. Monitoring the behavior of software is known to in-

troduce a probe effect, where the computational overhead from monitoring introduces timing

delays into the behavior of the system. In a time-dependent system, or a system with limited

computational resources, this probe effect can cause erroneous behavior. If monitoring alone

can cause a system to perform incorrectly, the computational cost of both monitoring and steer-

ing an embedded or real-time system can be prohibitively high. Therefore, the applicability of

program steering techniques on such systems is limited.
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More importantly, however, is the source of the deviations between the model and the sys-

tem. These deviations result not necessarily from the incorrect functioning of the system, but

from a disagreement between the idealized world of the model and the reality of the execution

of the system under test. In cases where the system is actually acting incorrectly, we don’t want

to steer at all—we want to issue a failure verdict so that the developer can change the implemen-

tation. In many of these deviations, however, it is not the system that is incorrect. If the model

does not account for the real-world execution of the SUT, then the model is the artifact that is

incorrect. Therefore, we can take inspriation from program steering for this situation—rather

than immediately issuing a failure verdict, we can attempt to correct the behavior of the model.

4.3 Search-Based Software Testing

In its current form, the process of oracle steering is formulated as a search problem. Given a

set of constraints and an objective function (i.e., the state comparison performed by the dissim-

ilarity function), we search for the optimal steering action. The field of search-based software

engineering [74] is full of examples of such problems, particularly in the area of software test-

ing [75, 76, 77, 78]. Search methods have been applied to a wide variety of testing goals includ-

ing structural [79], functional [80], non-functional [81] and state-based testing [82]. Search-

based approaches have even been used to help support oracle creation [31, 2].

The search process that we currently use to perform oracle steering is a form of bounded

model checking. Model checking is an automatic approach to property verification for concur-

rent, reactive systems [28]. This process starts with a model described by the user (generally

either a transition-based model or a format from which a transition-based model can be synthe-

sized from) and discovers whether hypotheses asserted by the user are valid on the model. If

such hypotheses can be violated, the model checker produces a counter-example showing a set

of transitions that cause the violation. This process is at the heart of most verification frame-

works, such as UPPAAL [62]. Properties are asserted, and a search algorithm attempts to find a

violation of that property.

Model checking is based on the concept of temporal logic—that a formula is not statically

true or false in a model [28]. Rather, a formula may be true in some states and false in others.

Bounded model checking is a specific form of model checking where, given a transition-based

model M , a temporal logic formula f , and a user-supplied time bound k, we can construct
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a propositional formula that is satisfiable if and only if f is satisfiable over a transition path

of length k. The oracle steering problem can naturally be seen as a form of bounded model

checking. We have a series of constraints (the user-specified tolerances), and seek a single

transition that brings the model to a state that satisfies those constraints. This is a bounded path

of length 12.

A class of search algorithms known as SAT solvers often form the core of a bounded model

checking approach [83]. Satisfiability, or SAT for short, is the problem of determining if there

exists an interpretation that satisfies a given Boolean formula. Satisfiability establishes if the

variables of a given Boolean formula can be assigned in such a way as to make the formula eval-

uate to true [84, 85]. SAT is an NP-complete problem—no known polynomial-time algorithm

exists that can solve all instances of SAT, and it is likely that no such algorithm can exist [86].

However, certain algorithms—called SAT solvers—can find solutions to a large enough subset

of SAT instances to be useful for purposes of model analysis.

Many optimization problems can be transformed into instances of SAT [84], or more gener-

ally, into instances of SMT (satisfiability modulo theories). An SMT instance is a generalization

of a SAT instance in which variables are replaced by predicates from a variety of underlying

theories. SMT formulas provide a richer language than is possible with standard SAT formulas.

Our problem of oracle steering can also be thought of in the framework of SMT—we have a

set of constraints on what variables can be steered and how they can be transformed, and the

additional constraint that the output of a candidate steering target must match the behavior of

the target system more closely than the original state reached in the oracle. These constraints

can be expressed in conjunctive normal form (CNF) as a SMT problem.

Search algorithms, including those that address SAT/SMT problems, typically come in two

different forms—complete and metaheuristic methods [87]. Complete methods are exhaustive

searches that guarantee an optimal solution if there exists one (these searches do not try all

possible configurations, they instead use pruning methods to guide the search process). Meta-

heuristic search methods use different techniques to sample the search space and report the best

observed result. Metaheuristic search methods tend to be much faster than complete searches

and scale to larger problems, but do not come with a guarantee of optimality.
2we could make use of a longer path length if we wanted to allow the model a series to actions when moving into

conformance with the system, but for testing purposes, a shorter path prevents steering from covering for faults.
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4.3.1 Complete Search

One example of a complete method is the branch-and-bound algorithm [88]. This algorithm is

conceptually simple: set a literal in the boolean formula to a particular value, apply that value

to the formula, and check to see if the value satisfies all of the clauses that it appears in. If

so, assign a value to the next variable. However, if setting a value unsatisfies a clause, then a

backtracking step (a bound) is initiated and the other possible value is applied. This process

prunes branches of the formed boolean decision tree. Consider the following example in CNF

(from [87]):

f = (¬x2 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (x4 ∨ ¬x5) ∧ (x1 ∨ x2) (4.2)

We first set a value of zero to x1. This inserts a zero into clauses two and four, but does not

satisfy or unsatisfy either clause yet. Next, we insert a value of zero for x2. This satisfies the

first clause, but unsatisfies the fourth clause (as both x1 and x2 are set to zero). Therefore, we

stop and backtrack, assigning a new value of one to x2. This satisfies the fourth clause. We can

continue this process with all variables until the complete formula is satisfied.

Another common complete method is the Davis-Putnam-Logemann-Loveland, or DPLL,

algorithm [89]. DPLL is conceptually similar to the branch-and-bound method, but a few key

differences give it an edge on a number of SAT problems. Like with branch-and-bound, DPLL

begins by selecting a variable and applying a value to it. If this value satisifies the clause, then

all clauses containing that variable are removed from the formula. If the variable is made false

due to negation, the algorithm instead remove that variable from only the cause that it is negated

in. This process is repeated recursively until a solution is found. This induces a domino effect—

as more variables are removed from clauses, more clauses turn into unit clauses. Again, we can

consider the following example:

f = (¬x2 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (x4 ∨ ¬x5) ∧ (x1 ∨ x2) (4.3)

If we assign a value of zero to x2, the first clause is rendered true (¬x2 = ¬0 = 1). We can

eliminate the first cause from the formula and x2 from clause four. This leaves the following:

f = (x1 ∨ ¬x3 ∨ x4) ∧ (x4 ∨ ¬x5) ∧ (x1) (4.4)
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As the third clause is now a unit clause, we assign x1 = 1. We can now remove both clauses

one and three from the formula:

f = (x4 ∨ ¬x5) (4.5)

From this point, the example is trivially solved with x4 = 0 and x5 = 0.

A common approach of complete search in testing is the automated generation of test

cases [90]. In software testing, the need to determine the adequacy of test suites has moti-

vated the development of several classes of test coverage criteria [91]. For example, structural

coverage criteria measure test suite adequacy using the coverage over the structural elements of

the system under test, such as statements or control flow branches. Expressions related to how

those structural elements need to be exercised can be encoded as clauses to be satisfied by the

search algorithm.

In this case, how the complete search works is that each test obligation—an expression

describing how to exercise a structural element of the SUT—is encoded into the SMT instance.

These obligations are expressed in a negative form, called a trap property [92]. For example,

we might assert that “We can never exercise this branch or statement.” The solver then attempt

to violate this property by finding a series of inputs to the SUT that will exercise that element

in the manner that we have specified. Through this process, the search algorithm can improve

coverage and reduce the cost associated with test creation [93].

The current implementation of oracle steering makes use of Microsoft Research’s Z3 theo-

rem prover [30]. Z3’s SMT solver is based on the DPLL algorithm, with additional specialized

solvers that handle equalities and uninterpreted functions, arithmetic operations, and quantifiers.

In order to choose a steering action, we encode the following into the SMT instance: (1)

the tolerance constraints, and (2) a dissimilarity goal. As a complete search will always find

a solution if it exists (unless the state space is too large to explore), rather than just accepting

any dissimilarity score that is better than the original calculation, we encode a direct goal—i.e.,

a dissimilarity score of 0. If that cannot be matched, we can achieve partial conformance by

encoding progressive larger scores as goals until we find a solution that matches that goal.

To find the steering action, we encode these constraints as trap properties. For example, we

might assert that the dissimilarity score can not be 0. Then, we ask the solver to find a solution

that violates that assertion within a bounded number of transitions. If a state that can be found

that gives a score of 0, we know that the set of input that transitions the model to that state is
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the steering action that we want to choose.

4.3.2 Metaheuristic Search

Incomplete methods use a heuristic-based search to quickly find a near-optimal solution [87].

Metaheuristic search methods are fast and can efficiently solve larger search problems than

complete methods, but do not carry the same guarantee of optimality.

Oracle steering is currently based on complete search. A complete search was chosen to

help choose optimal steering actions, but this choice places limitations on the size of the state

space of the models we steer, the speed of the approach, and the complexity of the dissimilarity

metric. Therefore, in the future, we would like to consider the use of metaheuristic search

in oracle steering. The use of a metahueristic method would come at the potential cost in

optimality, but could enable:

• Larger models. This is particularly useful if we want to consider steering over multiple

test steps at once.

• Complex dissimilarity metrics. Models may require careful choice of a steering action,

and this may require comparisons of weighted variables, strings, and other mathemati-

cally complex expressions that cannot easily be evaluated as part of a complete search.

• Online steering. Currently, steering takes place as part of offline testing. However, a fast

search technique may enable the use of steering during live execution of a system.

The cornerstone of metaheuristic search methods is the objective function, a numeric met-

ric used to score the optimality of observed solutions [94]. According to Clark and Har-

man [74, 94], there are four key properties that should be met for a metaheuristic approach

to be successfully applied to a software engineering problem:

1. A Large Search Space: If there are only a small number of factors to compare, there

is no need for a search-based approach. This is rarely the case, as software engineering

typically deals in incredibly large search spaces.

2. Low Computational Complexity: If the first property is met, search algorithms must

sample a non-trivial population. A typical run of one of these searches requires thou-

sands of executions of a score evaluation. Therefore, the computational complexity of

the evaluation method has a major impact on the overall search.
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3. Approximate Continuity of the Objective Function: While it is not necessary for an

objective function to be continuous, too much discontinuity can mislead a search. Any

search-based optimization must rely on an objective function for guidance, and continuity

will ensure that such guidance is accurate.

4. No Known Optimal Solutions: If an optimal solution to a problem is already known,

then there exists no need to apply search techniques.

All four of these characteristics are prevalent in software engineering problems [95]—

particularly properties 1 and 4—and our problem of oracle steering potentially meets all of

these conditions. The set of reachable states in a model can be exponentially large. Yet, rep-

resentations such as ordered binary decision diagrams [96] make computing this set computa-

tionally feasible and the comparison of a candidate state to the system state can be inexpensive

to compute. In the case of oracle steering, the dissimilarity function is a natural choice for an

objective function. Almost all possible options for a dissimilarity function are continuous nu-

meric functions [26]. Finally, we do not know the optimal steering action in the vast majority

of situations.

Numerous algorithms are used to conduct search-based software engineering experiments,

including hill climbers [77], local searches such as simulated annealing [97] and tabu search [98,

99], generic and evolutionary algorithms [100, 101], and swarm optimization [102], among

others.

Rather than asserting a dissimilarity goal—as was the case when using a complete method—

we could use the dissimilarity score as an objective function. We could sample the search space

for candidate solutions that meet the tolerance constraints, then accept the solution found with

the lowest dissimilarity score.

Metaheuristic search techniques have been used for SAT/SMT problems as well. One ex-

ample of a SAT solver using a metaheuristic search is the WalkSAT algorithm [103]. WalkSAT

is a greedy hill-climbing search that starts by assigning a random value to each variable in the

boolean formula. If this assignment satisfies all clauses, the algorithm terminates and returns

the assignment. Otherwise, WalkSAT randomly picks a clause that is unsatisfied by the current

assignment and flips the value of a variable to a value that will satisfy that clause. However, at a

certain probability level, WalkSAT will instead pick a variable at random to flip from the whole

formula. The occasional random flip prevents WalkSAT from becoming stuck in local plateaus
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in the search space. If no solution is found within a certain number of flips, the algorithm will

restart with a new random assignment.

Like with a complete search, a metaheuristic algorithm such as WalkSAT could be used

to produce a suite of test cases that achieve some form of structural coverage. The set of test

obligations for, say, branch coverage could be encoded into a conjunctive normal form state-

ment. Then, the WalkSAT algorithm could try to find a solution that satisfies the largest number

of obligations (clauses). In this case, our objective function could be the number of satisfied

obligations [77]. We choose tests that cover a large percentage of the branches, statements,

or conditions of a program. Another common objective function for structural coverage is the

percentage of additional coverage added by a test. Thus, we would choose the test that covers

the largest number of obligations not yet covered by another test.



Chapter 5

Experimental Studies

We aim to assess the capabilities of oracle steering and the impact it has on the testing process—

both positive and negative. Thus, we pose the following research questions:

1. To what degree does steering lessen behavioral differences that are legal under the system

requirements?

2. To what degree does steering mask behavioral differences that fail to conform to the

requirements?

3. Are there situations where a filtering mechanism is more appropriate than actively steer-

ing the oracle, and vice-versa?

As we suspect that the success of the steering process is, at least partially, dependent on

the quality of the constraints imposed, we also wish to explore the impact of different sets of

steering constraints:

4. To what degree does the strictness of the employed tolerance constraints impact the cor-

rectness of the steered oracle verdict?

5. How accurate are tolerance constraints learned automatically from previously steered test

execution traces?

61
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5.1 Experimental Setup Overview

Our case study centers around models of two industrial-scale real-time medical device sys-

tems. The first system is the management subsystem of a generic Patient-Controlled Analgesia

(GPCA) infusion pump [104]. This subsystem takes in a prescription for a drug—as well as

several sensor values—and determines the appropriate dosage of the drug to be administered to

a patient each second over a given period of time.

The second system is based on the pacing subsystem of an implanted pacemaker, built

from the requirements document provided to the Pacemaker Challenge [105]. This subsystem

monitors the patient’s cardiac activity and, at appropriate times, commands the pacemaker to

provide electrical impulses to the appropriate chamber of the heart.

These models, developed in the Simulink and Stateflow notations and translated into the

Lustre synchronous programming language [106], are complex real-time system of the type

common in the medical device domain. Details on the size of the Simulink model and the

number of lines of code in the translated Lustre code are provided in Table 5.1.

# States # Transitions Lustre LOC
Infusion Mgr 23 50 6299

Pacing 48 120 24017

Table 5.1: Case Example Information

To evaluate the performance of oracle steering, we performed the following for each system:

1. Generated system implementations: We approximated the behavioral differences ex-

pected from systems running on real embedded hardware by creating alternate versions

of each model with non-deterministic timing elements. We also generated 50 mutated

versions of both the oracle and each ”SUT” with seeded faults (Section 5.2).

2. Generated tests: We randomly generated 100 tests for each case example, each varying

from 30-100 test steps (input to output sequences) in length (Section 5.2).

3. Set steering constraints: We constrained the variables that could be adjusted through

steering and the values that those variables could take on, and established dissimilarity

metrics to be minimized (Sections 5.4 and 5.3).
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4. Assessed impact of steering: For each combination of SUT, test, and dissimilarity met-

ric, we attempted to steer the oracle to match the behavior of the SUT. We compare the

test results before and after steering and evaluate the precison and recall of our steer-

ing framework, contrasted against the general practice of not steering and a step-by-step

filtering mechanism (Section 5.6).

5. Assessed impact of tolerance constraints: We repeated steps 3-4 for each SUT and five

mutants using four different sets of tolerance constraints, varying in strictness, in order to

assess the impact of the choice of constraints (Sections 5.4 and 5.6).

6. Learned new tolerance constraints: Using the original and steered traces for each

model and the trace for each SUT, for each of the four constraint levels and both dis-

imilarity metrics, we extracted 10 sets of tolerance constraints (= 80 per SUT) using the

TAR3 treatment learning algorithm (Section 5.5).

7. Assessed performance of learned tolerance constraints: We repeated steps 3-4 for

each SUT using the extracted tolerance constraints in order to assess the quality of those

constraints.

5.2 System and Test Generation

To produce “implementations” of the example systems, we created alternative versions of each

model, introducing realistic non-deterministic timing changes to the systems. For the Infusion

system, we built (1) a version of the system where the exit of the patient-requested dosage

period may be delayed by a short period of time, and (2) a version of the system where the

exit of an intermittent increased dosage period (known as a square bolus dose) may be delayed.

These changes are intended to mimic situations where, due to hardware-introduced computation

delays, the system remains in a particular dosage mode for longer than expected.

For the Pacing system, we introduced a non-deterministic delay on the arrival of sensed

cardiac activity. As a pacemaker is a complex, networked series of subsystems that depend on

strict timing conditions, a common source of mismatch between model and system occurs when

sensed activity arrives at a particular subsystem later than expected. Depending on the extent

of the delay, unnecessary electrical impulses may be delivered to the patient or the pacemaker

may enter different operational modes than the model.
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For each of the original models and “system under test” variants, we have also generated

50 mutants (faulty implementations) by introducing a single fault into each model. This ulti-

mately results in a total of 152 SUT versions of the Infusion system—two versions with non-

deterministic timing behavior, fifty versions with faults, and one hundred versions with both

non-deterministic timing and seeded faults (fifty per timing variation)—and 101 SUT variants

of the Pacing system—one SUT with non-deterministic timing, fifty with faults, and fifty with

both non-deterministic timing and seeded faults.

The mutation testing operators used in this experiment include changing an arithmetic op-

erator, changing a relational operator, changing a boolean operator, introducing the boolean ¬
operator, using the stored value of a variable from the previous computational cycle, chang-

ing a constant expression by adding or subtracting from int and real constants (or by negating

boolean constants), and substituting a variable occurring in an equation with another variable

of the same type. The mutation operators used are discussed at length in an earlier report [107],

and are similar to those used by Andrews et.al, where the authors found that generated mutants

are a reasonable substitute for actual failures in testing experiments [108].

Using a random testing algorithm, we generated 100 tests. For the Infusion system, each test

is thirty steps in length, representing thirty seconds of system activity. For the pacing system,

the tests range 30-100 steps in length, representing input and output events occurring over 3000

ms of activity. In both cases, the test length was chosen to be long enough to capture a relevant

range of time-sensitive behaviors, but still short enough to yield a reasonable experiment cost.

These tests were then executed against each model and SUT variant in order to collect traces.

In the SUT variants with timing fluctuations, we controlled those fluctuations through the use

of an additional input variable. The value for that variable was generated non-deterministically,

but we used the same value across all systems with the same timing fluctuation. As a result, we

know whether a resulting behavioral mismatch is due to a seeded timing fluctuation or a seeded

fault in the system. Using this knowledge, we manually classified each test as an “expected

pass” or as failing due to an “acceptable timing deviation”, an “unacceptable timing deviation”,

or a “seeded fault.”



65

5.3 Dissimilarity Metrics

In this experiment, we have made use of two different dissimilarity metrics when comparing

a candidate state of the model-based oracle to the state of the SUT. The first is the Manhattan

(or City Block) distance. Given vectors representing the state of the SUT and the model-based

oracle—where each member of the vector represents the value of a variable—the dissimilarity

between the two vectors can be measured as the sum of the absolute numerical distance between

the state of the SUT and the model-based oracle:

Dis(sm, ssut) =
n∑
i=1

|sm,i − ssut,i| (5.1)

The second is the Squared Euclidean distance. Given vectors representing the state, the dissim-

ilarity between the vectors can be measured as the “straight-line” numerical distance between

the two vectors. The squared variant was chosen because it places greater weight on states that

are further apart in terms of variable values.

Dis(sm, ssut) =
n∑
i=1

(sm,i − ssut,i)2 (5.2)

A constant difference of 1 is used for differences between boolean variables or values of an

enumerated variable. All numerical values are normalized to a 0-1 scale using predetermined

constants for the minimum and maximum values of each variable.

When formulating a dissimilarity metric—or, for the matter, an oracle verdict—we must

choose a set of variables to compare between the oracle model and SUT. As we cannot assume

a common internal structure between the SUT and the model, we calculate similarity using the

output variables of both systems. For the infusion pump, this includes the commanded flow

rate, the current system mode, the duration of active infusion, a log message indicator, and a

flag indicating that a new infusion has been requested. For the pacemaker, this set of variables

consists of an atrial event classification, a ventricular event classification, the time of the event,

the time of the next scheduled atrial pace attempt, and the time of the next scheduled ventricular

pace attempt.
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5.4 Manually-Set Tolerance Constraints

In order to assess the performance and capabilities of steering, we have specified a realistic set

of tolerance constraints for both systems: For both systems, we have specified the tolerance

constraints on steering in terms of limits on the adjustment of the input variables of the system

(our model-based oracle steering framework allows constraints to be placed on internal or output

variables as well). The chosen tolerance constraints for the Infusion system include:

• Five of the input variables relate to timers within the system—the duration of the patient-

requested bolus dose period, the duration of the intermittent square bolus dosage period,

the lockout period between patient-requested bolus dosages, the interval between inter-

mittent square bolus dosages, and the total duration of the infusion period. For each

of those, we placed an allowance of (CurrV al − 1) <= NewV al <= (CurrV al +

2). E.g., following steering, a dosage duration is allowed to fall within a three second

period—between one second shorter and two seconds longer than the original prescribed

duration.

• The remaining 15 input variables are not allowed to be steered.

and, for the Pacing system:

• The input for a sensed cardiac event includes a timestamp indicating when the system

will process the event. For this event, we placed an allowance of Current V alue <=

New V alue <= (Current V alue + 4). Following steering, the sensed event can be

adjusted to have taken place anywhere within a four millisecond window following the

original timestamp.

• There are also boolean input variables indicating whether an event was sensed in the atrial

or ventricular chambers of the heart. These can be toggled on or off, to better match the

noise level in the SUT.

• The remaining 17 input variables are not allowed to be steered.

These constraints reflect what we consider a realistic application of steering—we expect

issues related to non-deterministic timing, and, thus, allow a small acceptable window around

the behaviors that are related to timing. For the Infusion system, we do not expect any sensor
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inaccuracy, so we do not allow freedom in adjusting sensor-based inputs. We expect a small

amount of event reordering and noise for the Pacing system, so there we allow a small amount

of freedom in changing sensor-based values. As these are medical devices that could harm a

patient if misused, we do not allow any changes to the inputs related to prescription values. As

these are restrictive constraints, we deem these the Strict tolerance constraints.

In order to assess the impact of different levels of strictness in the tolerance constraints,

we took each SUT variant, five randomly-selected mutants of the original system, and five

randomly-selected mutants for each SUT and attempted to steer them using the Strict tolerances

and three additional sets of tolerances: Medium, Minimal, and No Input Constraints.

For the Infusion system, these are as follows:

• Medium: All time-based inputs, (CurrV al − 2) <= NewV al <= (CurrV al + 5).

All other variables are not allowed to be steered.

• Minimal: All time-based inputs completely unconstrained. All other variables are not

allowed to be steered.

• No Input Constraints: All variables unconstrained.

and, for the Pacing system:

• Medium: Ventricle and atrial sensed events unconstrained. Event time,Current V alue <=

New V alue <= (Current V alue + 25). Refractory periods, Current V alue <=

New V alue <= (Current V alue + 10). All other variables are not allowed to be

steered.

• Minimal: Ventricle and atrial sensed events and event time unconstrained. Refractory

periods, Current V alue <= New V alue <= (Current V alue + 25). Lower and

upper rate limit, Current V alue <= New V alue <= (Current V alue + 10). All

other variables are not allowed to be steered.

• No Input Constraints: All input variables unconstrained.

These additional constraint sets represent a gradual relaxation of the limits on what steering

is allowed to change, and are intended to demonstrate the impact that the choice of constraints

has on the effectiveness of steering.
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5.5 Learning Tolerance Constraints

In Section 3.4, we discussed the process of using treatment learning to extract a set of tolerance

constraints. We wished to know whether we could learn tolerances for the case studies examined

in this paper, and whether these tolerances are effective at guiding the steering process.

Using the process outlined previously, we generated tolerance constraints for the Infusion

variant where the patient bolus period can be extended non-deterministically and for the Pacing

system. Starting from the strict, medium, and minimal tolerance constraints and using no input

constraints, we executed tests, steered the models, and extracted data from those executions and

classifications on what the correct verdict should be post-steering. Because the treatment learn-

ers use a heuristic search process, we generate ten sets of constraints per preexisting constraint

set (i.e., 10 sets generated after extracting data from steering with strict tolerance constraints, 10

sets generated after extracting data from steering with no input constraints, etc). We repeat this

for each dissimilarity metric. This results in eighty sets of tolerance constraints learned from

each system (4 constraint levels x 10 repeats x 2 metrics).

We generate tolerances using the TAR3 treatment learning algorithm. TAR3 is a well-known

approach to treatment learning [34, 35, 36, 37]. It produces treatments by first being fed a set

of training examples, E. Each example e ∈ E consists of values, discretized into a series of

ranges, for a given set of attributes. This set of value ranges is directly mapped to a specific

classification, Ri, Rj , ... → C. As in Section 3.4, each example corresponds to a test step,

where the attributes of the data set represent the changes made to variable values by steering

and the correctness of the changes.

In order to produce a treatment, a target classification Ctarget must be specified, and the set

of class symbols C1, C2,...,Ctarget are ranked and sorted based on a utility score U1 < U2 <

... < Utarget, where Utarget represents the utility score of the target classification. Within the

dataset E, each classification occur at a certain frequencies (F1, F2,..., Ftarget) where
∑
Fi =

1—that is, each class occupies a fraction of the overall dataset.

TAR3 produces treatments by utilizing two important scoring heuristics—lift and support.

A treatment T of size M is a conjunction of attribute value ranges R1 ∧ R2... ∧ RM Some

subset of the examples in the dataset (e ⊆ E) is contained within T . That is, if the treatment

is used to filter E, e ⊆ E is what will remain. In that subset, the possible classifications occur

at frequencies f1, f2,..., fC . The lift of a treatment is a measurement in the change in class



69

distribution in the entries of the dataset that remain after a treatment has been imposed. That is,

TAR3 seeks the smallest treatment T that induces the biggest changes in the weighted sum of

the utility scores multiplied by the frequencies of the associated classes. This score, calculated

based on the subset e ⊆ E that results when T has been imposed, is divided by the score of the

baseline score (dataset E when no treatment has been applied). The lift is formally defined as:

lift =

∑
c Ucfc∑
c UcFc

. (5.3)

Real-world datasets, especially those recorded from hardware systems [34], contain some

noise—incorrect or misleading data. If these noisy examples are correlated with particular

classifications, the treatment may become overfitted. An overfitted model result in a large lift

score, but it does not accurately reflect the general conditions of the dataset’s search space. To

avoid overfitting, TAR3 adopts a threshold and reject all treatments that fall on the wrong side

of this threshold. This is defined as the minimum best support.

The best support is defined as the ratio of the frequency of the target classification within

the treatment subset to the frequency of that classification in the overall dataset. To avoid

overfitting, TAR3 rejects all treatments with best support lower than a user-defined minimum

(usually 0.2). As a result, treatments produced by TAR3 will have both a high lift and high

support.

TAR3’s lift and support calculations can assess the effectiveness of a treatment, but they are

not what generates the treatments themselves. A naive approach to treatment learning might

be to test all subsets of all ranges of all of the attributes. However, as a dataset of size N has

2N possible subsets, this type of brute force attempt is inefficient. Instead, TAR3 employs a

heuristic approach that begins by discretizing every continuous attribute into smaller ranges by

sorting their values and dividing them into a set of equally-sized bins (producing the attribute

value ranges contained within treatments). It then limits the size of a treatment, only building

treatments up to a user-defined size. Past research [36, 37] has shown that treatments larger than

four attributes lack support and are harder for humans to understand.

TAR3 will only build treatments from the discretized ranges with a high heuristic value. It

determines which ranges to use by first determining the lift score of each individual attribute’s

value ranges (that is, the score of the class distribution obtained by filtering for the data instances

that contain a value in that particular range for that particular attribute). These individual scores
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are then sorted and converted into a cumulative probability distribution. TAR3 randomly selects

values from this distribution, meaning that low-scoring ranges are unlikely to be selected in the

first place. To build a treatment, n random ranges are selected and combined. These treatments

are then scored and sorted. If no improvement is seen after a certain number of rounds, TAR3

terminates and returns the top treatments.

In order to create a set of tolerance constraints, we first create 10 treatments—like those

seen in Table 3.3—that indicate the correct use of steering to adjust the state of the model. As

some of these items may not actually be indicative of successful steering, coincidental steering

actions that appear in both correct and incorrect steering, we also produce 10 treatments that

correspond to incorrect steering actions. We remove any treatments that appear in both the

“good” and “bad” sets, leaving only those that appear in the good set. We then form our set of

elicited tolerance constraints by locking down any variables that constraints were not suggested

for. This results in a set of tolerances similar to that shown in Figure 3.6. We repeat this process

ten times for each constraint level and dissimilarity metric in order to control for the effects of

variance.

5.6 Evaluation

Using the generated artifacts—without steering—we monitored the outputs during each test,

compared the results to the values of the same variables in the model-based oracle to calcu-

late the dissimilarity score, and issued an initial verdict. Then, if the verdict was a failure

(Dis(sm.ssut) > 0), we steered the model-based oracle, and recorded a new verdict post-

steering. As mentioned above, the variables used in establishing a verdict are the five output

variables of the system.

In Section 3, we stated that an alternative approach to steering would be to apply a filter on a

step-by-step basis. We have implemented such a filter for the purposes of establishing a baseline

to which we can compare the performance of steering. This filter compares the values of the

output variables of the SUT to the values of those variables in the model-based oracle and, if

they do not match, checks those values against a set of constraints. If the output—despite non-

conformance to the model—meets these constraints, the filter will still issue a “pass” verdict for

the test.

For the Infusion Mgr system, the filter will allow a test to pass if (despite non-conformance)
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values of the output variables in the SUT satisfy the following constraints:

• The current mode of the SUT is either “patient dosage” mode or “intermittent dosage”

mode, and has not remained in that mode for longer than prescribed duration + 2

seconds.

• If the above is true, the commanded flow rate should match the prescribed value for the

appropriate mode.

• All other output variables should match their corresponding variables in the oracle.

As we expect a non-deterministic duration for the patient dosage and intermittent dosage modes

(corresponding to the seeded issues in the SUT variants), this filter should be able to correctly

classify many of the same tests that we expect steering to handle.

For the Pacing system, the filter will allow a test to pass if the values of the output variables

satisfy:

• The event timestamp on the output and the scheduled time of the next atrial and ventric-

ular events fall within four milliseconds of the time originally predicted by the model.

• All other output variables should match their corresponding variables in the oracle.

Similar to the Infusion Mgr system, we expect short non-deterministic delays in when the Pac-

ing system issues an output event.

We compare the performance of the steering approach to both the filter and the default

practice of accepting the initial test verdict. We can assess the impact of steering or filtering

using the verdicts made before and after steering by calculating:

• The number of true positives—steps where an approach does not mask incorrect behavior;

• The number of false positives—steps where an approach fails to account for an acceptable

behavioral difference;

• And the number of false negatives—steps where an approach does mask an incorrect

behavior.
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Initial Verdict Pass (Post-Steering) Fail (Post-Steering)
Pass TN FP

Fail (Due to Timing,
Within Tolerance)

TN FP

Fail (Due to Timing,
Not in Tolerance)

FN TP

Fail (Due to Fault) FN TP

Table 5.2: Verdicts: T(true)/F(false), P(positive)/N(negative).

The testing outcomes in terms of true/false positives/negatives are listed in Table 5.2. Using

these measures, we calculate the precision—the ratio of true positives to all positive verdicts—

and recall—the ratio of true positives to true positives and false negatives:

Precision =
TP

TP + FP
(5.4)

Recall =
TP

TP + FN
(5.5)

We also calculate the F-measure—the harmonic mean of precision and recall—in order to judge

the accuracy of oracle verdicts:

Accuracy (F-measure) = 2 ∗ precision ∗ recall
precision+ recall

(5.6)



Chapter 6

Results and Discussion

As previously presented in Table 5.2, testing outcomes can be categorized according to the

initial verdict as determined by the model-based oracle before steering; a “fail” verdict is further

delineated according to its reason—a mismatch that is attributable to either an allowable timing

fluctuation, an unacceptable timing fluctuation or a fault.

For the Infusion Mgr system—when running all tests over the various implementations

(containing either timing deviations or seeded faults as discussed in Section 5.2) using a stan-

dard test oracle comparing the outputs from the SUT with the outputs predicted by the model-

based oracle (15,200 test runs)—11,364 runs indicated that the system under test passed the test

(the SUT and model-based oracle agreed on the outputs) and 3,936 runs indicated that the test

failed (the SUT and model-based oracle had mismatched outputs). In an industry application

of a model-based oracle, the 3,936 failed test would have to be examined to determine if the

failure was due to an actual fault in the implementation, an unacceptable timing deviation from

the expected timing behavior, or an acceptable timing deviation that, although it did not match

the behavior predicted by the model-based oracle, was within acceptable tolerances—a costly

process. Given our experimental setup, however, we can classify the failed tests as to the cause

of the failure: failure due to timing within tolerances, failure due to timing not in tolerance, and

failure due to a fault in the SUT. This breakdown is provided in Table 6.2. As can be seen, 1,406

tests failed even though the timing deviation was within what would be acceptable—these can

be viewed as false positives and a filtering or steering approach that would have passed these

test runs would provide cost savings. On the other hand, the steering or filtering should not

pass any of the 268 tests where timing behavior falls outside of tolerance or the 2,229 tests that

73
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Table 6.1: Experimental results for the Infusion Mgr system.

Verdict Number of Tests
Pass 11364 (74.8%)

Fail (Due to Timing,
Within Tolerance)

1406 (9.2%)

Fail (Due to Timing,
Not in Tolerance)

268 (1.8%)

Fail (Due to Fault) 2229 (14.6%)

Table 6.2: Initial test results when performing no steering or filtering for Infusion Mgr system.
Raw number of test results, followed by percent of total.

Initial Verdict Pass (Post-Steering) Fail (Post-Steering)
Pass 11364 (74.8%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

1245 (8.2%) 152 (1.0%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 268 (1.8%)

Fail (Due to Fault) 43 (0.3%) 2186 (14.3%)

Table 6.3: Distribution of results for steering of Infusion Mgr. Raw number of test results,
followed by percent of total. Results same for both dissimilarity metrics

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 11364 (74.8%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

1245 (8.2%) 152 (1.0%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 268 (1.8%)

Fail (Due to Fault) 1252 (8.2%) 977 (6.4%)

Table 6.4: Distribution of results for step-wise filtering of Infusion Mgr. Raw number of test
results, followed by percent of total.

Technique Precision Recall Accuracy
No Adjustment 0.64 1.00 0.78

Filtering 0.89 0.50 0.64
Steering (Both Metrics) 0.94 0.98 0.96

Table 6.5: Precision, recall, and accuracy values for Infusion Mgr.

indicated real faults.

A similar breakdown can be found for the Pacing system in Table 6.7. About a third of

the test executions—2,992 in total—pass initially. A further 21%, or 2,208 tests, fail due to
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Table 6.6: Experimental results for the Pacing system.

Verdict Number of Tests
Pass 2992 (29.6%)

Fail (Due to Timing,
Within Tolerance)

2208 (21.2%)

Fail (Due to Timing,
Not in Tolerance)

571 (5.7%)

Fail (Due to Fault) 4329 (42.9%)

Table 6.7: Initial test results when performing no steering or filtering for Pacing system. Raw
number of test results, followed by percent of total.

Initial Verdict Pass (Post-Steering) Fail (Post-Steering)
Pass 2992 (29.6%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

2065 (20.4%) 143 (1.4%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 571 (5.7%)

Fail (Due to Fault) 297 (2.9%) 4032 (39.9%)

Table 6.8: Distribution of results for steering of Pacing. Raw number of test results, followed
by percent of total. Results same for both dissimilarity metrics

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 2992 (29.6%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

1010 (10.0%) 1198 (11.9%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 571 (5.7%)

Fail (Due to Fault) 258 (2.6%) 4071 (40.3%)

Table 6.9: Distribution of results for step-wise filtering of Pacing. Raw number of test results,
followed by percent of total.

Technique Precision Recall Accuracy
No Adjustment 0.69 1.00 0.82

Filtering 0.79 0.95 0.86
Steering (Both Metrics) 0.97 0.94 0.95

Table 6.10: Precision, recall, and accuracy values for Pacing.

acceptable timing deviations. These should, ideally, pass following the application of steering

or filtering. A further 571 test executions fail due to unacceptable timing differences, and 4,329

fail due to seeded faults. Steering and filtering should, ideally, not correct these tests.
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Results obtained from the case study showing the effect of steering on oracle verdicts are

summarized in Table 6.3 and 6.8 respectively, for the Infusion Mgr and Pacing systems. For

both systems, the two dissimilarity metrics performed identically. The raw results are presented

as laid out in Table 5.2. For each category, the post-steering verdict is presented as both a

raw number of test outcomes and as a percentage of total test outcomes. Tables 6.4 and 6.9

show the corresponding data for the step-by-step filtering approach for the two systems. Data

from these tables lead to the precision, recall, and Accuracy values—shown for Infusion Mgr

in Table 6.5 and for Pacing in Table 6.10—for the default testing scenario (accepting the initial

oracle verdict), steering, and filtering. In the following sections, we will discuss the results

presented in these tables with regard to our central research questions.

6.1 Allowing Tolerable Non-Conformance

For the Infusion Mgr system—according to Table 6.2—11% of the tests (1,674 tests) initially

fail due to timing-related non-conformance. Of those, 1406 tests (9.2% of the total) fall within

the tolerances set in the requirements. Steering should result in a pass verdict for all of those

tests. Similarly, of the 2,779 tests (26.9%) that fail due to timing reasons in the Pacing system,

2,208 (21.2%) fail due to differences that are acceptable, and steering should account for these

execution divergences (see Table 6.7).

As Table 6.3 shows, for both dissimilarity metrics, steering is able to account for almost

all of the situations where non-deterministic timing affects conformance while both the model-

based oracle and the implementation remain within the bounds set in the system specification.

We see that steering using either distance metric correctly passes 1,245 tests where the timing

deviation was acceptable—tests that without steering failed. Therefore, we see a sharp increase

in precision over the default situation where no steering is employed (from 0.64 when not steer-

ing, to 0.94 when steering, according to Table 6.5).

Table 6.8 demonstrates similar results for steering on the Pacing system. Steering correctly

changes the verdicts of 2,065 of the tests that initially failed. As shown in Table 6.10, this results

in a large increase in precision—from 0.69 when not steering to 0.97.

Where previously developers would have had to manually inspect the more than 25% of all

test execution traces for the Infusion Mgr system (the sum of all “Fail” verdicts in Table 6.3)

to determine the causes for their failures (system faults or otherwise), they could now narrow
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their focus to the roughly 17% of test executions that still result in failure verdicts post-steering.

For the Pacing system, steering drops this total from 70% inspection rate to a somewhat more

managable 47%.

Particularly given the large number of tests in this study, this reduction represents a signif-

icant savings in time and effort, removing between potentially thousands of execution traces

that the developer would have needed to inspect manually. Still, for both systems, there were a

small number of tests that steering should have been able to account for (152, or 1% of the test

executions, for Infusion Mgr and 143, 1.4%, for Pacing). The reason for the failure of steering

to account for allowable differences can be attributed to a combination of three factors: the tol-

erance constraints employed, the dissimilarity metric employed, and internal design differences

between the SUT and the model-based oracle.

First, it may be that the tolerance constraints were too strict to allow for situations that

should have been considered legal. As discussed in Section 3.3, the employed tolerance con-

straints play a major role in determining the set of candidate steering actions. By design, con-

straints should be relatively strict—after all, we are overriding the nominal behavior of the

oracle while simultaneously wishing to retain the oracle’s power to identify faults. Yet, the

constraints we apply should be carefully designed to allow steering to handle these allowed

non-conformance events. In this case, the chosen constraints may have prevented steering from

acting in a relatively small number of situations in which it should have been able to account

for a behavior difference. This is to be expected, and one of the strengths of steering is that it

is relatively easy to tune the constraints and execute tests again until the right balance is struck.

Fortunately, for both systems, the chosen constraints were able to account for the vast majority

of situations that should have been corrected.

Second, the dissimilarity metric plays a role in guiding the selection of steering action.

In our experiments, we noted no differences between the Manhattan and Squared Euclidean

metrics in the solutions chosen—both took the same steering actions. By design, the metrics

compare the output variables of the model and SUT (i.e., the set of variables that we use to de-

termine a test verdict) and compute a numeric score. For the systems examined, the output vari-

ables were relatively simple numeric or boolean values, and we did not witness any situations

where the metric could be “tricked” into favoring changes to one particular variable or another.

In other types of systems, the choice of metric may play a more important role—particularly if,

say, string comparisons are needed.
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However, although the two metrics performed identically well, they may also both share the

same blind spot. The metrics compare state in this round of execution, and do not consider the

implications of a steering action in future test steps. It is possible that multiple candidate steer-

ing actions will result in the same score, but that certain choices will cause eventual divergences

between the model and SUT that cannot be reconciled at that time. Such a possibility is limited

in this particular experiment due to the strictness of the tolerance constraints employed, but will

be discussed in more detail with regard to the tolerance experiment examined in Section 6.4. It

is possible that the “wrong” steering actions were chosen in those cases where steering failed to

correct the verdict—initially closing the execution gap, but causing further eventual divergence.

This indicates a need for further research work on limiting future side effects when choosing a

steering action, and may necessitate further development of dissimilarity metrics.

Third, as previously discussed, the tolerance constraints reduce the space of candidate tar-

gets to which the oracle may be steered. We then use the dissimilarity metric to choose a

“nearest” target from that set of candidates. Thus, the relationship between the constraints and

the metric ultimately determines the power of the steering process. However, no matter how

capable steering is, there may be situations where differences in the internal design of the sys-

tem and model render steering either ineffective or incorrect. We base steering decisions on

state-based comparisons, but those comparisons can only be made on the portion of the state

variables common between the SUT and oracle model (and, in particular, we limit this knowl-

edge to the variables used for the oracle’s verdict comparison, as these are the only variables

we can assume the common existence of). As a result, there may be situations where we should

have steered, but could not, as the state of the SUT depended on internal factors not in common

with the oracle. In general, as the oracle and SUT are both ultimately based on the same set of

requirements, we believe that some kind of relationship can be established between the internal

variables of both realizations. However, in some cases, the model and SUT may be too different

to allow for steering in all allowable situations. The inability of steering to account for tolerable

differences for at least some tests in this case study can likely be attributed to the changes made

to the SUT versions of the models.

In practice, when tuning the precision of steering, the choice of steering constraints seems

to have the largest impact on the resulting accuracy of the steering process (see Section 6.4).

While we do believe that the choice of metric and the relationship between the metric and the

constraints both play an important role in determining the effectiveness of steering, in practice,
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the set of constraints chosen showed the clearest correlation to the resulting precision. There-

fore, if steering results in a large number of false failure verdicts, we would first recommend

that testers experiment with different sets of constraints until the number of false failures has

decreased (without covering up known faults).

6.2 Masking of Faults

As steering changes the behavior of the oracle and can result in a new test verdict, the danger of

steering is naturally that it will mask actual faults in the system. Such a danger is concerning,

but with the proper choice of steering policies and constraints, we hypothesize that such a risk

can be reduced to an acceptable level.

As can be seen in Table 6.3, when steering the Infusion Mgr model, we changed a fault-

induced “fail” verdict to “pass” in forty-three tests. This is a relatively small number—only

0.3% of the 15,200 test executions. This, according to Table 6.5, results in a drop in recall from

1.0 (for accepting the initial verdict) to 0.98. For the Pacing model, as shown in Table 6.8,

steering adjusted a fault-induced failure to a pass for a small, but slightly higher, percentage

of test executions—258 runs, or 2.9% of the test executions. The resulting recall is 0.94 for

steering (Table 6.10).

Although any loss in recall is cause for concern when working with safety-critical systems,

given the small number of incorrectly adjusted test verdicts for both systems, we believe that

it is unlikely for an actual fault to be entirely masked by steering on every test in which the

fault would otherwise lead to a failure. Of course, we still would urge care when working with

steering.

Just as the choice of tolerance constraints can explain cases where steering is unable to

account for an allowable non-conformance, the choice of constraints has a large impact on the

risk of fault-masking. At any given execution step, steering, as we have defined here, considers

only those oracle post-states as candidate targets that are reachable from the the given oracle

pre-state. However, this by itself is not sufficiently restrictive to rule out truly deviant behaviors.

Therefore, the constraints applied to reduce that search space must be strong enough to prevent

steering from forcing the oracle into an otherwise impermissible state for that execution step.

It is, therefore, crucial that proper consideration goes into the choice of constraints. In some

cases, the use of additional policies—such as not steering the oracle model at all if it does not
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Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 11311 (74.4%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

312 (2.1%) 1123 (7.4%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 268 (1.7%)

Fail (Due to Fault) 598 (3.9%) 1688 (11.1%)

Table 6.11: Distribution of results for step-wise filtering, (outputs + volume infused oracle), for
Infusion Mgr. Raw number of test results, followed by percent of total.

result in an exact match with the system—can also lower the risk of tolerating behaviors that

would otherwise indicate faults.

Note that a seeded fault could cause a timing deviation (or the same behavior that would

result from a timing deviation). In those cases, the failure is still labeled as being induced by

a fault for our experiment. However, if the fault-induced deviation falls within the tolerances,

steering will be able to account for it. In real world cases, where the faults are not purposefully

induced, it is unlikely that even a human oracle would label the outcome differently, as they are

working from the same system and domain knowledge that the tolerance constraints are derived

from.

In real-world conditions, if care is taken when deriving the tolerance constraints from the

system requirements, steering should not cover any behaviors that would not be permissible un-

der those same requirements. Still, as steering carries the risk of masking faults, we recommend

that it be applied as a focusing tool—to point the developer toward test failures likely to indicate

faults so that they do not spend as much time investigating non-conformance reports that turn

out to be allowable. The final verdict on a test should come from a run of the oracle model

with no steering, but during development, steering can be effective at streamlining the testing

process by concentrating resources on those failures that are more likely to point to faults.

6.3 Steering vs Filtering

In some cases, acceptable non-conformance events could simply be dealt with by applying a

filter that, in the case of a failing test verdict, checks the resulting state of the SUT against a set

of constraints and overrides the initial oracle verdict if those constraints are met. Such filters

are relatively common in GUI testing [21].
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Technique Precision Recall Accuracy
No Adjustment 0.64 1.00 0.78

Filtering 0.64 0.76 0.70
Steering (Both Metrics) 0.94 0.98 0.96

Table 6.12: Precision, recall, and accuracy values for filtering (outputs + volume infused oracle)
for Infusion Mgr.

The use of a filter is tempting—if the filter is effective, it is likely to be easier to build and

faster to execute than a full steering process. Indeed, for Infusion Mgr, the results in Table 6.4

appear initially promising. The filter performs identically to steering for the initial failures that

result from non-deterministic timing differences. It does not issue a pass verdict for timing

issues outside of the tolerance limits, and it does issue a pass for almost all of the tests where

non-conformance is within the tolerance bounds. As can be seen in Table 6.5, the use of a filter

increases the precision from 0.64 for no verdict adjustment to 0.89.

However, when the results for tests that fail due to faults are considered, a filter appears

much less attractive. The filter issues a passing verdict for 1,252 tests that should have failed—

1,209 more than steering. This is because a filter is a blunt instrument. It simply checks whether

the state of the SUT meets certain constraints when non-conformance occurs. This allowed the

filter to account for the allowed non-conforming behaviors, but these same constraints also

allowed a large selection of fault-indicating tests to pass.

This makes the choice of constraints even more important for filtering than it is in steering.

The steering process, by backtracking the state of the system, is able to ensure that the resulting

behavior of the SUT is even possible (that is, if the new state is reachable from the previous

state). The filter does not check the possibility of reaching a state; it just checks whether the new

state is globally acceptable under the given constraints. As a result, steering is far more accurate.

A filter could, of course, incorporate a reachability analysis. However, as the complexity of the

filter increases, the reasons for filtering instead of steering disappear.

In fact, the success of steering at accounting for allowable non-conformance is somewhat

misleading for the Infusion Mgr case example. Both filtering and steering base their decisions

on the output variables of the SUT and oracle, on the basis that the internal state variables may

differ between the two. For this case study, all of the output variables reflect current conditions

of the infusion pump—how much drug volume to infuse now, the current system mode, and so

forth. Internally, these factors depend on both the current inputs and a number of cumulative
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factors, such as the total volume infused and the remaining drug volume. Over the long term,

non-conformance events between the SUT and model will build, eventually leading to wider

divergence. For example, the SUT or the model-based oracle may eventually cut off infusion if

the drug reservoir empties. While a filter may be a perfectly appropriate solution for static GUIs,

the cumulative build-up of differences in complex systems, will likely render a filter ineffective

on longer time scales.

As the output variables reflect current conditions for this system, mounting internal differ-

ences may be missed, and the filter may not be able to cope with larger behavior differences

that result from this steady divergence. Steering is able to prevent these long-term divergences

by actually changing the state of the oracle throughout the execution of the test. A filter simply

overrides the oracle verdict. It does not change the state of the oracle, and as a result, a filter

cannot predict or handle behavioral divergences once they build beyond the set of constraints

that the filter applies.

We can illustrate this effect by adding a single internal variable to the set of variables con-

sidered when making filtering or steering conditions—a variable tracking the total drug volume

infused. Adding this variable causes no change to the results of steering seen in Table 6.3.

However, the addition of this internal variable dramatically changes the results of filtering. The

new results can be seen in Tables 6.11 and 6.12.

Because the total volume infused increases over the execution of the test, it will reflect any

divergence between the model-based oracle and the SUT. As steering actually adjusts the execu-

tion of the model-based oracle, this volume counter also adjusts to reflect the changes induced

by steering. Thus, steering is able to account for the growing difference in the volume infused

by the model-based oracle and the volume infused by the SUT. However, as the filter makes

no such adjustment, it is unable to handle the mounting difference in this variable (or any other

considered variable that reflects change over time). The filter, even if initially effective, will fail

to account for a large number of acceptable non-conformance events—ultimately resulting in a

precision value no more effective than not doing anything at all (and a far lower recall).

Similar results can be seen for the Pacing system in Table 6.9. The output variables of

the Pacing example include both immediate commands, but also scheduled times for the next

pacing events in both heart chambers. As a result, the output variables reflect internally-growing

divergences between the model and SUT far more quickly than they appear in Infusion Mgr.

Thus, the precision of filtering is far lower than that of steering for the Pacing system, as the
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filter struggles to keep up with the time-dependent changes that mount over the execution of the

test case. When we moved the internal volume counter variable to the outputs of Infusion Mgr,

we saw precision fall and recall rise. Similarly, for Pacing, precision is far lower for the filter

than for steering, but the loss in recall is quite small as a result. The filter does not allow many

divergences to pass—legal or illegal. Thus, filtering actually has a slightly higher level of recall

than steering. However, it comes at a far higher cost to precision.

6.4 Impact of Tolerance Constraints

The tolerance constraints limit the choice of steering action. In essence, they define the speci-

fication of what non-determinism we will allow, bounding the variance between the model and

SUT that can be corrected. As emphasized in Section 3.3, the selection of an appropriate set of

constraints in likely a crucial factor in the success or failure of steering. If tolerance constraints

are too strict, we hypothesize that they will be useless for correcting the allowable behavioral

deviations; too loose, and dangerous faults may be masked. We saw hints of this in the initial

experiment, which utilized strict tolerance constraints. We masked only a vanishingly small

number of faults, but we also failed to account for a small number of tests that should have

been handled. The choice of constraints was a key factor in both the success of steering—not

masking faults—and the limitations of the process—not handling all acceptable tests.

Given the apparent importance of the selection of tolerance constraints, we wished to deter-

mine the exact impact of the choice of tolerance constraints. One advantage of using steering

over, say, directly modeling non-determinism is that, by utilizing a seperate collection of rules

to specify the bounds on acceptable non-deterministic deviations, we can easily change the con-

straints. By swapping in a new constraint file and re-executing the test suite, one can examine

the effects of steering with the new limitations. For both Infusion Mgr and Pacing, we took

the implementations and five mutants for the original and each implementation and executed

the test suite using four different sets of constraints. These are detailed in Section 5.4, and

represent a steady loosening of the constraints from strict to no constraints at all.

Precision, recall, and accuracy results for Infusion Mgr can be seen in Table 6.14. Exact

values for accepting the initial verdict, filtering, and strict constraints differ slightly from those

in Table 6.5, due to the lower number of mutants used, but the trends remain the same. As

detailed in Table 6.16, steering with strict constraints improves precision by quite a bit by
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Table 6.13: Constraint results for the Infusion Mgr system (Overview).

Technique Precision Recall Accuracy
No Adjustment 0.58 1.00 0.73

Filtering 0.89 0.67 0.76
Steering - Strict 0.93 1.00 0.96

Steering - Medium 0.90 0.88 0.89
Steering - Minimal 0.98 0.85 0.91

Steering - No Input Constraints 1.00 0.48 0.65

Table 6.14: Precision, recall, and accuracy values for different tolerance constraint levels—as
well as filtering and no adjustment—for the Infusion Mgr system. Results are the same for both
dissimilarity metrics. Visualized below.
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Table 6.15: Constraint results for the Infusion Mgr system (Detailed).
Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)

Pass 1270 (74.9%) 0 (0.0%)
Fail (Due to Timing,
Within Tolerance)

161 (9.4%) 19 (1.1%)

Fail (Due to Timing,
Not in Tolerance)

0 (0.0%) 35 (2.0%)

Fail (Due to Fault) 0 (0.0%) 210 (12.4%)

Table 6.16: Distribution of results for steering with strict tolerance constraints for the Infu-
sion Mgr system. Raw number of test results, followed by percent of total. Results are the
same for both dissimilarity metrics.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 1270 (74.9%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

156 (9.2%) 24 (1.4%)

Fail (Due to Timing,
Not in Tolerance)

30 (1.8%) 5 (0.3%)

Fail (Due to Fault) 0 (0.0%) 210 (12.4%)

Table 6.17: Distribution of results for steering with medium tolerance constraints for the Infu-
sion Mgr system. Raw number of test results, followed by percent of total. Results are the same
for both dissimilarity metrics.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 1270 (74.9%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

176 (10.4%) 4 (0.2%)

Fail (Due to Timing,
Not in Tolerance)

35 (2.1%) 0 (0.0%)

Fail (Due to Fault) 1 (0.1%) 209 (12.3%)

Table 6.18: Distribution of results for steering with minimal tolerance constraints for the Infu-
sion Mgr system. Raw number of test results, followed by percent of total. Results are the same
for both dissimilarity metrics.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 1270 (74.9%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

180 (10.6%) 0 (0.0%)

Fail (Due to Timing,
Not in Tolerance)

35 (2.1%) 0 (0.0%)

Fail (Due to Fault) 92 (5.4%) 118 (7.0%)

Table 6.19: Distribution of results for steering with no input constraints for the Infusion Mgr
system. Raw number of test results, followed by percent of total. Results are the same for both
dissimilarity metrics.
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correcting almost all of the acceptable behavioral deviations, while masking no faults. Filtering,

as in Section 6.3, improves precision, but at the cost of covering up many faults (resulting in a

lower recall value).

As we loosen the constraints to the medium level—detailed in Table 6.17—we see a curious

drop in precision. A small number of additional tests that fail due to acceptable non-determinism

still fail after steering. It is likely that this is due to the sudden availability of additional steering

actions. When presented with more choices, the search process chooses one of the several that

minimizes the dissimilarity metric now, but causes side effects later on. We will revisit this

when examining the results for the Pacing system. The recall also dips significantly. Inspecting

Table 6.17 makes the reason for this clear, when given more freedom to adjust the timer values,

the steering process will naturally cover up unacceptable timing differences. This underlines

the importance of selecting constraints carefully.

When examining the results with minimal constraints and when there are no constraints on
the input variables for Infusion Mgr, shown in Tables 6.18 and 6.19, two clear trends emerge.

The first is that, as the constraints loosen, the precision rises. Naturally, given the freedom to

make larger and larger adjustments to the selected steerable variables, the search process can

handle more and more of the tests that fail due to acceptable deviations. Unsurprisingly, this

increase in precision comes at a heavy cost to recall. With minimal constraints, we now not only

can handle more of the acceptable deviations, but we also cover up many of the unacceptable

deviations. Fortunately, we still effectively do not mask code-based faults. This is an encour-

aging result for steering. Although minimal constraints do cover the bad behaviors induced by

non-determinism, we are still not masking issues within the code of the system.

That changes when we move to steering with no input constraints on the input variables

of Infusion Mgr. Now, not only can we handle all of the timing-based failures—acceptable or

illegal—we also mask many of the induced faults as well. This is not unexpected. Given com-

plete freedom to deviate from the original test inputs, guided only by the use of the dissimilarity

metric, steering will mask many illegal behaviors. This is a clear illustration of the importance

of selecting the correct constraints. Give too much freedom, and faults will be masked; too little

freedom, and acceptable deviations will distract testers. It is important to experiment and strike

the correct balance. Fortunately, our initial set of tolerances seems to have hit a reasonable

balance point for Infusion Mgr.

The precision, recall, and accuracy figures for the Pacing system appear in Table 6.21.
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Table 6.20: Constraint results for the Pacing system (Overview).

Technique Precision Recall Accuracy
No Adjustment 0.61 1.00 0.76

Filtering 0.72 0.93 0.81
Steering - Strict 0.95 0.93 0.94

Steering - Medium 0.94 0.77 0.85
Steering - Minimal 0.94 0.77 0.85

Steering - No Input Constraints 0.62 0.89 0.73

Table 6.21: Precision, recall, and accuracy values for different tolerance levels—as well as
filtering and no adjustment—for the Pacing system. Results are the same for both dissimilarity
metrics. Visualized below.
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Table 6.22: Constraint results for the Pacing system (Detailed).

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 308 (28.0%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

284 (25.8%) 22 (2.0%)

Fail (Due to Timing,
Not in Tolerance)

3 (0.2%) 81 (7.3%)

Fail (Due to Fault) 30 (2.7%) 372 (33.8%)

Table 6.23: Distribution of results for steering with strict tolerance constraints for the Pacing
system. Raw number of test results, followed by percent of total. Results are the same for both
dissimilarity metrics.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 308 (28.0%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

284 (25.8%) 22 (2.0%)

Fail (Due to Timing,
Not in Tolerance)

70 (6.3%) 14 (1.2%)

Fail (Due to Fault) 40 (3.6%) 362 (32.9%)

Table 6.24: Distribution of results for steering with medium and minimal tolerance constraints
for the Pacing system. Raw number of test results, followed by percent of total. Results are the
same for both dissimilarity metrics.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Pass 308 (28.0%) 0 (0.0%)

Fail (Due to Timing,
Within Tolerance)

34 (3.1%) 272 (24.7%)

Fail (Due to Timing,
Not in Tolerance)

6 (0.5%) 78 (7.1%)

Fail (Due to Fault) 46 (4.1%) 362 (32.4%)

Table 6.25: Distribution of results for steering with no input constraints for the Pacing sys-
tem. Raw number of test results, followed by percent of total. Results are the same for both
dissimilarity metrics.
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Variable Name Explanation When Impacts Behavior
IN V EVENT Sensed event indicator for ventricle chambers Immediate
IN A EVENT Sensed event indicator for atrial chambers Immediate

IN EVENT TIME Time of sensor poll Immediate
IN SYSTEM MODE Current system mode Immediate

IN LRL Lower rate limit on paces Likely Delayed
IN URL Upper rate limit on paces Likely Delayed

IN HYSTERESIS RL Optional adaptation of artificial pacing Likely Delayed
rate to natural pacing

IN VRP Ventricular refractory period following a ventricular event Likely Delayed
IN ARP Atrial refractory period following an atrial event Likely Delayed

IN PVARP Atrial refractory period following a ventricular event Likely Delayed
IN PVARP EXTENSION Optional extension on PVARP following certain events Likely Delayed

IN FIXED AVD Fixed timing window between atrial event Likely Delayed
and ventricular reaction

IN DYNAMIC AVD Enables a dynamic timing window between Likely Delayed
atrial events and ventricular reactions

IN DYNAMIC AVD MIN Minimum dynamically-determined value for AVD window Likely Delayed
IN ATR MODE Enables special mode to ease patient Delayed

out of pacemaker-induced atrial tachycardia
IN ATR DURATION Defines minimum period before entering ATR mode Likely Delayed

IN ATR FALLBACK TIME Defines duration of ATR mode Likely Delayed

Table 6.26: Inputs for the Pacing system.

Again, the results for no adjustment, filtering, and strict steering follow the same trends as the

earlier experiment (see Table 6.10). Filtering and steering do equally well on recall, but steering

achieves far higher precision. The filter is unable to keep up with the behavior divergences that

build over time, while steering keeps up by adjusting execution each time behaviors diverge.

As we shift to the medium, minimal, and no input constraint results—detailed in Ta-

bles 6.24 and 6.25—we see an interesting divergence from the results for Infusion Mgr. Namely,

that rather that improving, the precision actually significantly drops—from 0.95, to 0.94, and

finally to 0.62. Steering the Pacing model with no input constraints is barely more accurate on

the legal divergences than not steering at all.

By loosening the constraints, we gave the steering algorithm more freedom to manipulate

the input values. On the Infusion Mgr system, this resulted in us being able to handle more and

more of the acceptable behavior differences, but at the cost of also covering up more and more

of the unacceptable differences. On Pacing, we cover more faults as the constraints are loos-

ened, but steering actually grows far less capable at accounting for the acceptable differences.

This can be explained by examining the steerable variables for the Pacing system, detailed in

Table 6.26.

Unless particularly specific conditions are met, changes to many of the steerable variables
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for Pacing will have a delayed impact on the behavior of the system. For example, altering the

length of one of the refractory periods will only immediately impact behavior if we are in a

refractory period and decrease that period to be less than the current duration. To give a second

example, enabling or altering ATR mode settings will only alter behavior if we are already in

ATR mode, and even then, likely only after we have been in it for a longer period of time.

Therefore, given very loose constraints (or worse, no constraints), it is incredibly easy for the

steering algorithm to configure the immediately-effective variables to minimize the dissimilarity

score, but to also alter one of the delayed variables in such a way that it eventually drives the

model to diverge from the system. Infusion Mgr, too, has prescription variables that can have

delayed effects, but many of those could be adjusted again to “fix” the side effect. For Pacing,

many of these side effects can only be “fixed” after they have damaged conformance.

This issue further highlights the importance of choosing good constraints, as many of the

steering induced changes that can cause eventual side effects are also changes that would not

address hardware or time-based non-determinism. Intuitively, changes to the majority of pos-

sible timing issues with Pacing would be restricted to a small number of those input variables

and—even then—would only require small adjustments. You may want to correct a small delay

in pacing, or slightly shift the end of a refractory period that has lasted too long, but it is unlikely

that you would want to steer either of those factors by a significant amount, as the end result of

a software fault could impact the health of a patient.

The possibility of choosing a steering action with an undesirable delayed side effect points

to the need for further research on both tolerance constraints and dissimilarity metrics. We may

want to add in a penalty factor on changes to certain variables to bias the search algorithm to-

wards first trying the variables with immediate effects. We may also want to judge the impact of

a steering action on both the immediate differences between the model and SUT and the impact

on eventual differences. However, checking both current and future behavior is a difficult chal-

lenge, as the computational requirements to perform such a comparison may not be realistically

obtainable.

Ultimately, what we see from both systems is that the choice of tolerance constraints is

crucially important in determining the capabilities and limitations of steering. Relatively strict

constraints seem to offer the best balance between accounting for acceptable deviations and

masking fault-indicative behavior. As constraints loosen, we run a significantly increased risk

of masking faults or choosing steering actions with undesirable long-term side effects. That
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said, the key to determining a reasonable set of steering constraints is in understanding the re-

quirements of the system being built and the domain the device must operate within. Choosing

the correct set of constraints is important, but it is a task that reasonably experienced developers

should be capable of conducting. Our framework allows experimentation with different sets of

constraints, allowing developers to find and tune the tolerance constraints. By using domain

knowledge and the software specifications to build reasonable, well-considered constraints, we

can use steering to enable the use of model-based oracles and focus the attention of the devel-

opers.

6.5 Automatically Deriving Tolerance Constraints

As indicated in the previous section, tolerance constraints play an important role in the success

of steering. Selecting the right constraints is clearly important; yet, one can imagine scenarios

where the developers are uncertain of what boundaries to set or even what variables to loosen

or constrain. Thus, we were interested in investigating whether constraints can be learned from

steering against developer-classified test cases.

We took one of the time-delayed implementations of Infusion Mgr (called “PBOLUS”) and

the implementation of Pacing, steered using no input constraints for both dissimilarity metrics,

and derived ten sets of tolerance constraints using the learning process described in Section 3.4.

As the same learning process can also be applied to refine existing constraints, we repeated the

same process for the strict, medium, and minimal constraint sets.

The results for PBOLUS are shown in Table 6.27, where the reported calculations for the

learned constraints are the median of ten trials. As expected, making no adjustments to the

verdicts when steering PBOLUS results in the lowest precision. As we did not include any

of the implementations with seeded faults in this experiment, filtering performs very well—

handling the timing fluctuations specific to this implementation with relative ease. Across the

board, the results for the learned constraints are very positive, on average generally matching or

exceeding filtering.

When learning from the strict, medium, or minimal constraints, the learned constraints can

only be a tightening of the constraints being learned from. That is, if particular variables are

already locked down, then those variables will not suddenly be loosened. Variables that have

a tolerance window will only have that window remain the same size or have that window
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Technique Precision Recall Accuracy
No Adjustment 0.18 1.00 0.30

Filtering 0.70 1.00 0.82
Learned from Strict (Manhattan) 0.70 1.00 0.82

Learned from Strict (Squared Euclidean) 0.65 1.00 0.77
Learned from Medium (Manhattan) 0.70 1.00 0.82

Learned from Medium (Squared Euclidean) 0.70 1.00 0.82
Learned from Minimal (Manhattan) 0.73 1.00 0.84

Learned from Minimal (Squared Euclidean) 0.76 1.00 0.86
Learned from No Tolerances (Manhattan) 0.82 1.00 0.89

Learned from No Tolerances (Squared Euclidean) 0.76 1.00 0.86

Table 6.27: Median precision, recall, and accuracy values for learned tolerance constraints for
the Infusion Mgr PBOLUS system.

shrink—learning will not further open that window. Thus, a certain ceiling effect forms where,

if a developer missed a variable that should have been steerable, then the tightening can only

help a small amount with performance. Here, that performance ceiling for tightening seems

to line up with the performance of a filter. This was hinted at for the Infusion Mgr system in

Section 6.3, where the filter performed as well as strict steering for the allowable deviations.

Here, we see the same effect—when learning from existing constraints, we can only improve

performance to a limited degree.

This tightening may still be useful if a developer is sure of the variables to steer, but unsure

of the bounds to set on those variables. However, the results of learning from no preexisting

input constraints are interesting because they do not have this performance limitation. Given

just a set of classified tests with no input constraints, we are free to derive constraints on any

variables and freely set those boundaries. As a result, for the PBOLUS system, the best results

emerge when given this freedom, with median steering performance after learning from no input

constraints beating steering after learning from strict tolerance constraints on precision by up

to 17%. This suggests that the strict constraints may actually be stricter than they need to be,

potentially missing variables that should be adjustable.

Note that we did see minor differences between the executions using the Manhattan dissim-

ilarity metric and the Squared Euclidean metric. However, given their identical performance in

prior experiments, we believe the differences noted here are due to the stochastic nature of the

learning process, rather than a difference induced by the choice of metric.
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Technique Precision Recall Accuracy
No Adjustment 0.24 1.00 0.39

Filtering 0.32 1.00 0.48
Learned from Strict (Manhattan) 0.26 1.00 0.42

Learned from Strict (Squared Euclidean) 0.26 1.00 0.42
Learned from Medium (Manhattan) 0.26 1.00 0.42

Learned from Medium (Squared Euclidean) 0.26 1.00 0.42
Learned from Minimal (Manhattan) 0.26 1.00 0.42

Learned from Minimal (Squared Euclidean) 0.26 1.00 0.42
Learned from No Tolerances (Manhattan) 0.24 1.00 0.39

Learned from No Tolerances (Squared Euclidean) 0.25 1.00 0.40

Table 6.28: Median precision, recall, and accuracy values for learned tolerance constraints for
the Pacing system.

Initial Verdict Pass (Post-Filtering) Fail (Post-Filtering)
Fail (Due to Timing,
Within Tolerance)

9 67

Fail (Due to Timing,
Not in Tolerance)

0 24

Table 6.29: Distribution of results for steering with tolerance constraints learned from strict
for the Pacing system. Raw number of test results. Results are the same for both dissimilarity
metrics.

((real(IN_EVENT_TIME) = concrete_oracle_IN_EVENT_TIME) or ((real(IN_EVENT_TIME)
>= concrete_oracle_IN_EVENT_TIME + 2.000000) and (real(IN_EVENT_TIME)
<= concrete_oracle_IN_EVENT_TIME + 3.000000)))

((real(IN_AVD_OFFSET) >= concrete_oracle_IN_AVD_OFFSET) and (
real(IN_AVD_OFFSET) <= concrete_oracle_IN_AVD_OFFSET + 1.000000))

(real(IN_ARP) = concrete_oracle_IN_ARP)
(real(IN_VRP) = concrete_oracle_IN_VRP)
...
(real(IN_URL) = concrete_oracle_IN_URL)
(real(IN_LRL) = concrete_oracle_IN_LRL)

Figure 6.1: Sample constraints learned for Pacing.

At first, the results for the learned constraints for Pacing—shown in Table 6.28—appear

very poor. The constraints learned for Pacing score a median precision of around 0.26 in almost

all cases, and as low as 0.24. Filtering does not do well, either, but does lead the pack with a

precision of 0.32. We can see why the learning results are poor by examining the detailed test
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Technique Precision Recall Accuracy
No Adjustment 0.24 1.00 0.39

Filtering 0.32 1.00 0.48
Learned (All) 0.75 0.88 0.81

Table 6.30: Median precision, recall, and accuracy values for learned tolerance constraints for
the Pacing system after widening learned constraints.

executions, listed in Table 6.29. The learned constraints, in almost all cases, are extremely strict.

They never allow illegal behaviors to pass, but they also fail to compensate for the majority of

the legal deviations.

Interestingly, if we look at the learned constraints (an example set is listed in Figure 6.1), we

see that the learning process has actually picked up on the correct variables to set constraints on.

In particular, it almost universally allowed the sensed event indicators to be free and allowed a

small window of adjustment on the event time. However, it set too strict of a limit on how much

those variables could be adjusted. This is actually an easy “issue” to correct. As mentioned a

number of times, the use of a separate tolerance constraint file means that it is easy to experiment

with different constraints. Given that we are using a set of classified test results, we can simply

adjust the tolerances and re-execute the tests until the performance meets a desirable threshold.

Such an adjustment can even be done automatically, by systematically shrinking or widen-

ing the learned tolerances until this threshold is met. In this case, we take the constraints and

universally increased the windows by one on both ends. For example, the IN EVENT TIME

tolerance listed in Figure 6.1 transforms from allowing an adjustment of 2-3 seconds to allow-

ing an adjustment anywhere from 1-4 seconds. Even this small adjustment leads to markedly

improved results, as can be seen in Table 6.30. Across the board, this small adjustment led to a

median accuracy result of 0.81—far higher than no adjustment, filtering, or the original learned

constraints.

For both systems, the results of learning tolerance constraints seem quite positive. Given a

set of classified tests, we are able to extract a small, strict set of constraints that can be used—

perhaps after a small amount of tuning—to successfully steer a model.
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6.6 Summary of Results

The precision, recall, and F-measure (a measure of accuracy) for each method—accepting the

initial verdict, steering (using two different dissimilarity metrics), and filtering—are shown for

Infusion Mgr in Table 6.5 and for Pacing in Table 6.10.

The default situation, accepting the initial verdict, results in the lowest precision value.

Intuitively, not doing anything to account for allowed non-conformance will result in a large

number of incorrect “fail” verdicts. However, the default practice does have the largest recall

value. Again, not adjusting your results will prevent incorrect masking of faults. Filtering

on a step-by-step basis results in higher precision than doing nothing, but due to the lack of

reachability analysis and state adaptation—both of which used by the steering approach—the

filter masks an unacceptably large number of faults for Infusion Mgr. For Pacing, filtering is

unable to keep up with the complex divergences that build over time. Although it is able to

improve the level of precision over not adjusting the verdict, it fails to match the precision gains

seen when steering.

Steering performs identically for both of the dissimilarity metrics used in this study. It is

able to adapt the oracle to handle almost every situation where non-conforming behaviors are

allowed by the system requirements, while masking only a few faults in a small number of

tests. For both systems, steering results in a large increase in precision, with only a small cost

in recall.

Ultimately, we find that steering results in the highest accuracy for the final test results

for both systems. Steering demonstrates a higher overall accuracy—balance of precision and

recall—than filtering or accepting the initial verdict, 0.96 to 0.64 and 0.78 for Infusion Mgr and

0.95 to 0.86 and 0.82 for Pacing.

Tolerance constraints play a large role in determining the efficacy of steering, both limiting

the ability of steering to mask faults and its ability to correct acceptable deviations. Relatively

strict, well-considered constraints strike the best balance between enabling steering to focus de-

velopers and preventing steering from masking faults. As constraints are loosened, we observed

that steering may be able to account for more and more acceptable deviations, but at the cost

of also masking many more faults. Alternatively, loose constraints may also impair steering

from performing its job by allowing the search process to choose a steering action that causes

eventual side-effects.
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Fortunately—even if developers are unsure of what variables to set constraints on—as long

as they can classify the outcome of a set of tests, a set of constraints can automatically be

learned. For our case examples, the derived set of constraints was small, strict, and able to

successfully steer the model (albeit, for Pacing, with a small amount of tuning).

Steering is able to automatically adjust the execution of the oracle to handle non-deterministic,

but acceptable, behavioral divergence without covering up most fault-indicative behaviors. We,

therefore, recommend the use of steering as a tool for focusing and streamlining the testing

process.



Chapter 7

Threats to Validity

External Validity: Our study is limited to two case examples. Although we are actively work-

ing with domain experts to produce additional systems for future studies, we believe that the

systems we are working with to be representative of the real-time embedded systems that we

are interested in, and that our results will generalize to other systems in this domain.

We have used Stateflow translated to Lustre as our modeling language. Other modeling

notations can, in theory, be used to steer. We do not believe that the modeling language chosen

would have a significant impact on the ability to steer the model. Similarly, we have used

Lustre as our implementation language, rather than more common languages such as C or C++.

However, systems written in Lustre are similar in style to traditional imperative code produced

by code generators used in embedded systems development. A simple syntactic transformation

is sufficient to translate Lustre code to C code.

We have limited our study to fifty mutants for each version of the case example, resulting in

a total of 150 mutants for the Infusion Mgr system and 100 for the Pacing system. These values

are chosen to yield a reasonable cost for the study, particularly given the length of each test. It

is possible the number of mutants is too low. Nevertheless, we have found results using less

than 250 mutants to be representative [109, 107], and pilot studies have shown that the results

plateau when using more than 100 mutants.

Internal Validity: Rather than develop full-featured system implementations for our study,

we instead created alternative versions of the model—introducing various non-deterministic

behaviors—and used these models and the versions with seeded faults as our “systems under
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test.” We believe that these models are representative approximations of the behavioral differ-

ences we would see in systems running on embedded hardware. In future work, we plan to

generate code from these models and execute the software on actual hardware platforms.

In our experiments, we used a default testing scenario (accepting the oracle verdict) and

stepwise filtering as baseline methods for comparison. There may be other techniques—particularly,

other filters—that we could compare against. Still, we believe that the filter chosen was an ac-

ceptable comparison point, and was designed as such a filter would be in practice.

Construct Validity: We measure the fault finding of oracles and test suites over seeded

faults, rather than real faults encountered during development of the software. Given that our

approach to selecting oracle data is also based on the mutation testing, it is possible that using

real faults would lead to different results. This is especially likely if the fault model used in mu-

tation testing is significantly different than the faults we encounter in practice. Nevertheless, as

mentioned earlier, Andrews et al. have shown that the use of seeded faults leads to conclusions

similar to those obtained using real faults in similar fault finding experiments [110].



Chapter 8

Conclusion and Future Work

Specifying test oracles is still a major challenge for many domains, particularly those—such as

real-time embedded systems—where issues related to timing, sensor inaccuracy, or the limited

computation power of the embedded platform may result in non-deterministic behaviors for

multiple applications of the same input. Behavioral models of systems, often built for analysis

and simulation, are appealing for reuse as oracles. However, these models typically present an

abstracted view of system execution that may not match the execution reality. Such models will

struggle to differentiate unexpected—but still acceptable—behavior from behaviors indicative

of a fault.

To address this challenge, we have proposed an automated model-based oracle steering

framework that, upon detecting a behavioral difference, backtracks and selects—through a

search-based process—a steering action that will bring the model in line with the execution

of the system. To prevent the model from being forced into an illegal behavior—and masking

a real fault—the search process must select an action that satisfies certain constraints and min-

imizes a dissimilarity metric. This framework allows non-deterministic, but bounded, behavior

differences while preventing future mismatches by guiding the model, within limits, to match

the execution of the SUT.

Experiments, conducted over complex real-time systems, have yielded promising results

and indicate that steering significantly increases SUT-oracle conformance with minimal mask-

ing of real faults and, thus, has significant potential for reducing development costs. The use

of our steering framework can allow developers to focus on behavioral difference indicative of

real faults, rather than spending time examining test failure verdicts that can be blamed on a
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rigid oracle model.

8.1 Future Work

There is still much room for future work. A few of the topics that we plan to continue to explore

include:

• We plan to further examine the impact of different dissimilarity metrics, tolerance con-

straints, and steering policies on oracle verdict accuracy. Our results point to the im-

portance of setting the right constraints, and we will work to improve both automated

learning of constraints and on identifying advice on manually selecting and tuning con-

straints. With regard to dissimilarity functions, we have observed situations where the

action selected minimizes the function in the current comparison, but causes undesired

side effects later in execution. We plan to examine ways to avoid these side effects.

• We seek improvements to the speed and scalability of the steering framework, including

the use of metaheuristic search algorithms. Although complete search methods offer a

guarantee of optimality—if there is way to minimize the dissimilarity metric, the search

will find it—they operate under strict limitations and can take a long period of time to

find a solution. In some situations, it may be worth trading the optimality guarantee for

the increased speed and ability to solve mathematically complex dissimilarity metrics

offered by metahueristic search methods. We plan to explore the use and appropriateness

of different search techniques.

• We would like to examine the use of steering and dissimilarity metrics as methods of

quantifying non-conformance and their utility in fault identification and location. Using

the dissimilarity metric to quantify the impact of behavioral deviation could potentially

lead to powerful new techniques of test case generation, selection, and prioritization.

• And, we plan to examine the use of steering to debug faulty or incomplete oracle models.

Generally, oracles are assumed to be correct. However, like programs, test oracles are

developed by humans, and mistakes can be made in their construction. We have used

steering to extend models to handle unexpected real-world situations. However, the very

same techniques could be used to help automatically diagnose faults—or even correct—in

faulty oracle models.



References

[1] Saswat Anand, Edmund Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolf-

gang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An orchestrated

survey on automated software test case generation. Journal of Systems and Software,

86(8):1978–2001, August 2013.

[2] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A comprehensive survey of trends in

oracles for software testing. Technical Report CS-13-01, University of Sheffield, Depart-

ment of Computer Science, 2013.

[3] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed wp-method: testing real-time sys-

tems. Software Engineering, IEEE Transactions on, 28(11):1023–1038, Nov.

[4] Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E. Melhart. Soft-

ware requirements analysis for real-time process-control systems. IEEE Transactions on

Software Engineering, 17(3):241–258, March 1991.

[5] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-a

survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[6] MathWorks Inc. Stateflow. http://www.mathworks.com/stateflow, 2015.

[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,

and M. Trakhtenbrot. Statemate: A working environment for the development of com-

plex reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414,

April 1990.

[8] IBM Rational Rhapsody. http://www.ibm.com/developerworks/rational/ prod-

ucts/rhapsody/, 2014.

101



102

[9] D.W. Miller, J. Guo, E. Kraemer, and Y. Xiong. On-the-fly calculation and verification of

consistent steering transactions. In Supercomputing, ACM/IEEE 2001 Conf., pages 8–8,

2001.

[10] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-

mann, and Lev Nachmanson. Model-based testing of object-oriented reactive systems

with spec explorer. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, edi-

tors, Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science,

pages 39–76. Springer, 2008.

[11] Gregory Gay, Sanjai Rayadurgam, and Mats P.E. Heimdahl. Steering model-based or-

acles to admit real program behaviors. In Proceedings of the 36th International Con-

ference on Software Engineering – NIER Track, ICSE ’14, New York, NY, USA, 2014.

ACM.

[12] W.E. Howden. Theoretical and empirical studies of program testing. IEEE Transactions

on Software Engineering, 4(4):293–298, 1978.

[13] E.J. Weyuker. The oracle assumption of program testing. In 13th Int’l Conf on System

Sciences, pages 44–49, 1980.

[14] M. Staats, G. Gay, and M.P.E. Heimdahl. Automated oracle creation support, or: how

I learned to stop worrying about fault propagation and love mutation testing. In Pro-

ceedings of the 2012 Int’l Conf. on Software Engineering, pages 870–880. IEEE Press,

2012.

[15] D. Coppit and J.M. Haddox-Schatz. On the use of specification-based assertions as test

oracles. In Proceedings of the 29th Annual IEEE/NASA on Software Engineering Work-

shop, SEW ’05, pages 305–314, Washington, DC, USA, 2005. IEEE Computer Society.

[16] M. Pezze and M. Young. Software Test and Analysis: Process, Principles, and Tech-

niques. John Wiley and Sons, October 2006.

[17] The Modelica Association. Modelica - a unified object-oriented language for systems

modeling. Technical report, 2012.



103

[18] Adriano Gomes, Alexandre Mota, Augusto Sampaio, Felipe Ferri, and Edson Watanabe.

Constructive model-based analysis for safety assessment. Int’l Journal on Software Tools

for Technology Transfer, 14(6):673–702, 2012.

[19] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E. Heimdahl. Proving

the shalls: Early validation of requirements through formal methods. Int. J. Softw. Tools

Technol. Transf., 8(4):303–319, 2006.

[20] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems using

UPPAAL. In Int’l workshop on formal approaches to testing of software (FATES 04).

Springer, 2004.

[21] Sonal Mahajan and William G.J. Halfond. Finding html presentation failures using image

comparison techniques. In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering, ASE ’14, pages 91–96, New York, NY, USA, 2014.

ACM.

[22] W. Gu, J. Vetter, and K. Schwan. An annotated bibliography of interactive program

steering. ACM SIGPLAN Notices, 29, 1994.

[23] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow Pro-

gramming Language Lustre. Proceedings of the IEEE, 79(9):1305–1320, September

1991.

[24] David Hardin, T Douglas Hiratzka, D Randolph Johnson, Lucas Wagner, and Michael

Whalen. Development of security software: A high assurance methodology. In Formal

Methods and Software Engineering, pages 266–285. Springer, 2009.

[25] G. Hagen. Verifying safety properties of Lustre programs: an SMT-based approach. PhD

thesis, University of Iowa, December 2008.

[26] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between prob-

ability density functions. International Journal of Mathematical Models and Methods in

Applied Sciences, 1(4):300–307, 2007.

[27] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,

33(1):31–88, March 2001.



104

[28] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about

Systems, Second Edition. Cambridge Press, 2006.

[29] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam,

The Netherlands, The Netherlands, 2009.

[30] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[31] Phil McMinn, Mark Stevenson, and Mark Harman. Reducing qualitative human oracle

costs associated with automatically generated test data. In Proceedings of the First In-

ternational Workshop on Software Test Output Validation, STOV ’10, pages 1–4, New

York, NY, USA, 2010. ACM.

[32] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Houndations of Machine Learning. MIT

Press, 2012.

[33] Tim Menzies and Ying Hu. Data mining for very busy people. Computer, 36(11):22–29,

November 2003.

[34] Gregory Gay, Tim Menzies, Misty Davies, and Karen Gundy-Burlet. Automatically

finding the control variables for complex system behavior. Automated Software Engg.,

17(4):439–468, December 2010.

[35] Corina Pasareanu Tim Menzies Johann Schumann, Karen Gundy-Burlet and Anthony

Barrett. Software v&v support by parametric analysis of large software simulation sys-

tems. In 2009 IEEE Aerospace Conference, 2009.

[36] K. Gundy-Burlet, J. Schumann, T. Barrett, and T. Menzies. Parametric analysis of antares

re-entry guidance algorithms using advanced test generation and data analysis. In 9th

International Symposium on Artifical Intelligence, Robotics and Automation in Space,

2007.

[37] K. Gundy-Burlet, J. Schumann, T. Barrett, and T. Menzies. Parametric analysis of a

hover test vehicle using advanced test generation and data analysis. In AIAA Aerospace,

2009.



105

[38] Stephen D. Bay and Michael J. Pazzani. Detecting change in categorical data: Mining

contrast sets. In Proceedings of the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’99, pages 302–306, New York, NY, USA,

1999. ACM.

[39] Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated bibliography.

In Franck Cassez, Claude Jard, Brigitte Rozoy, and MarkDermot Ryan, editors, Model-

ing and Verification of Parallel Processes, volume 2067 of Lecture Notes in Computer

Science, pages 187–195. Springer Berlin Heidelberg, 2001.

[40] Jan Tretmans. Model based testing with labelled transition systems. In Formal methods

and testing, pages 1–38. Springer, 2008.

[41] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence, 1996.

[42] Jan Tretmans. A formal approach to conformance testing. In Proceedings of the IFIP

TC6/WG6.1 Sixth International Workshop on Protocol Test Systems VI, pages 257–276,

Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Publishing Co.

[43] ITU-T SG 10/Q.8 ISO/IEC JTC1/SC21 WG7. Information retrieval, transfer and man-

agement for osi; framework: Formal methods in conformance testing, 1996.

[44] Gilles Bernot. Testing against formal specifications: A theoretical view. In TAPSOFT’91,

pages 99–119. Springer, 1991.

[45] Rob J van Glabbeek. The linear timebranching time spectrum ii. In CONCUR’93, pages

66–81. Springer, 1993.

[46] R De Nicola. Extensional equivalence for transition systems. Acta Inf., 24(2):211–237,

April 1987.

[47] Laura Brandn Briones and Ed Brinksma. A test generation framework for quiescent

real-time systems. In IN FATES’04, pages 64–78. Springer-Verlag GmbH, 2004.

[48] Axel Belinfante, Jan Feenstra, RenG. de Vries, Jan Tretmans, Nicolae Goga, Loe Feijs,

Sjouke Mauw, and Lex Heerink. Formal test automation: A simple experiment. In

Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, Testing of Communicating



106

Systems, volume 21 of IFIP The International Federation for Information Processing,

pages 179–196. Springer US, 1999.

[49] Jan Tretmans and Ed Brinksma. Torx: Automated model-based testing. In A. Hartman

and K. Dussa-Ziegler, editors, First European Conference on Model-Driven Software

Engineering, pages 31–43, December 2003.

[50] Jean-Claude Fernandez, Claude Jard, Thierry Jeron, and Cesar Viho. An experiment in

automatic generation of test suites for protocols with verification technology. Science of

Computer Programming, 29(1):123–146, 1997.

[51] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimulation equiv-

alence. Formal Aspects of Computing, 5(1):1–20, 1993.
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Appendix A

Obtaining the Source Code and Models

In the interest of allowing others to extend, reproduce, or otherwise make use of the work that

we have conducted, the current version of our steering framework and experimental data—

including the models, mutants, and tests—is freely available under the Mozilla Public License.

This data and code is provided as-is, warts and all, but we are happy to answer questions or

assist as much as possible in working with this information.

1. The experimental data is available from

http://crisys.cs.umn.edu/PublicDatasets.shtml.

2. The source code—and binaries of the required dependencies—can be obtained from

https://github.com/Greg4cr.
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Appendix B

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but this cannot

always be achieved. This appendix defines domain-specific terms in a glossary, and contains a

table of acronyms and their meaning.

B.1 Glossary

• Software Test—An artifact used to either argue for the correctness of software or to find

faults in the software. A test case consists of test inputs (actions taken to stimulate the

system), a test oracle (see below), and a set of steps needed to prepare the system for test

execution.

• Test Oracle—An artifact that is used to judge the correctness of the system under test. A

test oracle consists of oracle information and an oracle procedure.

– Oracle Information—The data used by the oracle to judge the behavior of the sys-

tem under test. In our work, we have used behavioral models as oracle information.

Other oracles may use a set of assertions, or expected values for certain variables.

– Oracle Procedure—A function that takes the oracle information and uses it to as-

sess the behavior of the system under test, generally returning either a “pass” or

“fail” verdict. This is often a comparison of the state of certain system variables to

values given in the oracle information.

• Test Suite—A set of test cases.
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B.2 Acronyms

Table B.1: Acronyms

Acronym Meaning

FSM Finite-State Machine.

MBO Model-Based Oracle—a test oracle that uses a behavioral model as its

source of oracle information.

MC/DC Modified Condition & Decision Coverage—a form of structure-based

testing based on exercising the conditional statements in a particular

manner.

SBS(E/T) Search-Based Software (Engineering/Testing).

SE Software Engineering.

SUT System Under Test.


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Statement of Thesis
	Contributions of this Thesis
	Publications from this Thesis
	Structure of this Document

	Background
	Oracle Steering
	System Model
	Selecting a Steering Action
	Selecting Constraints
	Learning Constraints

	Related Work
	Model-Based Testing
	Models with Real-Valued Clocks
	Other Model-Based Approaches
	Comparison to Oracle Steering

	Program Steering
	Comparison to Oracle Steering

	Search-Based Software Testing
	Complete Search
	Metaheuristic Search


	Experimental Studies
	Experimental Setup Overview
	System and Test Generation
	Dissimilarity Metrics
	Manually-Set Tolerance Constraints
	Learning Tolerance Constraints
	Evaluation

	Results and Discussion
	Allowing Tolerable Non-Conformance
	Masking of Faults
	Steering vs Filtering
	Impact of Tolerance Constraints
	Automatically Deriving Tolerance Constraints
	Summary of Results

	Threats to Validity
	Conclusion and Future Work
	Future Work

	References
	 Appendix A.  Obtaining the Source Code and Models
	 Appendix B.  Glossary and Acronyms
	Glossary
	Acronyms


